Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 196))

  • 143 Accesses

Abstract

Confirmed inborn errors of folate transport and metabolism include hereditary folate malabsorption (HFM), glutamate formiminotransferase (GFT) deficiency, and methylenetetrahydrofolate reductase (MTHFR) deficiency. HFM is associated with severe megaloblastic anemia in infancy. The phenotype in GFT is unclear; patients are diagnosed on the basis of excretion of formiminoglutamic acid (FIGLU). The phenotype in MTHFR deficiency varies from infants with severe neurologic disease and death to asymptomatic adults. MTHFR-deficient patients do not have megaloblastic anemia, and diagnosis is based on the finding of homocysteinemia or homocystinuria in the presence of low or normal plasma levels of methionine. Substitution of alanine for valine in a conserved residue of the MTHFR gene is the cause of the thermolabile enzyme that has been associated with risk for cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blakely RL. Folates and Pterins. New York: Wiley, 1994.

    Google Scholar 

  2. Rosenblatt DS. Inherited Disorders of Folate Metabolism. In: Scriver CR (ed) Metabolic and Molecular Bases of Disease. New York: McGraw-Hill, 1995, pp 3111–3128.

    Google Scholar 

  3. Kutzbach C, Stokstad ELR. Mammalian methyl-enetetrahydrofolate reductase: Partial purification, properties, and inhibition by S-adenosylmethionine. Biochim Biophys Acta 250:459–477, 1971.

    Article  PubMed  CAS  Google Scholar 

  4. Noronha JM, Silverman M. On folic acid, vitamin B12, methionine and formiminoglutamic acid metabolism. In: Heinrich HC (ed) Vitamin B12 and Intrinsic Factor. Stuttgart, Germany: Springer-Verlag, 1962.

    Google Scholar 

  5. Beaudet R, Mackenzie RE. Formiminotransferase-cyclohydrolase from porcine liver: An octameric enzyme containing bifunctional polypeptides. Biochim Biophys Acta 453:151–161, 1976.

    Article  PubMed  CAS  Google Scholar 

  6. Zittoun J. Congenital errors of folate metabolism. In: Bailliere’s Clinical Haematology 8(3):603–6l6, 1995.

    Article  PubMed  CAS  Google Scholar 

  7. Arakawa T. Congenital defects in folate utilization. Amer J Med 48:594-591, 1970.

    Google Scholar 

  8. Erbe RW. Inborn errors of folate metabolism. In: Blakley RL, Whitehead VM (eds) Folates and Pterins, Vol 3: Nutritional, Pharmacological and Physiological Aspects. New York: John Wiley & Sons, 1986, pp 413–466.

    Google Scholar 

  9. Haworth JC, Dilling LA, Surtees RAH et al. Symptomatic and asymptomatic methylenetetrahydrofolate reductase deficiency in two adult brothers. Am J Med Genet 45:572–576, 1993.

    Article  PubMed  CAS  Google Scholar 

  10. Marquet J, Chadefaux B, Bonnefont JP, Saudubray JM, Zittoun J. Methylenetetrahydrofolate reductase deficiency: Prenatal diagnosis and family studies. Prenatal Diagn 14:29–33, 1994.

    Article  CAS  Google Scholar 

  11. Visy JM, Le Coz P, Chadefaux B et al. Homocystinuria due to 5, 10-methylenetetrahydrofolate reductase deficiency revealed by stroke in adult siblings. Neurology 41:1313–1315, 1991.

    Article  PubMed  CAS  Google Scholar 

  12. Freeman JM, Finkelstein JD, Mudd SH. Folate-responsive homocystinuria and “schizophrenia”: A new defect in methylation due to deficient 5, 10-methylenetetrahydrofolate reductase activity. N Engl J Med 10:491–496, 1975.

    Article  Google Scholar 

  13. Pasquier F, Lebert F, Petit H, Zittoun J, Marquet J. Methylenetetrahydrofolate reductase deficiency revealed by a neuropathy in a psychotic adult. J Neurol Neurosurg Psychiatr 57:765–766, 1994.

    Article  PubMed  CAS  Google Scholar 

  14. Goyette P, Frosst P, Rosenblatt DS, Rozen R. Seven novel mutations in the methylenetetrahydrofolate reductase gene and genotype/phenotype correlations in severe methylenetetrahydrofolate reductase deficiency. Am J Hum Genet 56:1052–1059, 1995.

    PubMed  CAS  Google Scholar 

  15. Goyette P, Milos R, Ducan AM et al. Human methylenetetrahydrofolate reductase: Isolation of cDNA, map** and mutation identification. Nature Genet 7:195–200, 1994.

    Article  PubMed  CAS  Google Scholar 

  16. Kang S-S, Wong PWK, Susmano A, Sora J, Norusis M, Ruggie N. Thermolabile methylenetetrahydrofolate reductase: An inherited risk factor for coronary artery disease. Am J Hum Genet 48:536–545, 1991.

    PubMed  CAS  Google Scholar 

  17. Engbersen AMT, Franken DG, Boers GHJ, Stevens EMB. Thermolabile 5, 10-methylenetetrahydrofolate reductase as a cause of mild hyperhomocysteinemia. Am J Hum Genet 56:142–150, 1995.

    PubMed  CAS  Google Scholar 

  18. Frosst P, Blom HJ, Milos R et al. A candidate genetic risk factor for vascular disease: A common methylenetetrahydrofolate reductase mutation causes thermoinstability. Nature Genet 10:111–113, 1995.

    Article  PubMed  CAS  Google Scholar 

  19. Rosenblatt DS, Erbe RW. Methylenetetrahydrofolate reductase in cultured human cells: II Genetic and biochemical studies of methylenetetrahydrofolate reductase deficiency. Pediatr Res 11:1141–1143, 1977.

    Article  PubMed  CAS  Google Scholar 

  20. Christensen E, Brandt NJ. Prenatal diagnosis of 5, 10-methylenetetrahydrofolate reductase deficiency. N Engl J Med 313:50–51, 1985.

    Article  PubMed  CAS  Google Scholar 

  21. Erbe RW. Genetic aspects of folate metabolism. Adv Hum Genet 9:293–354, 1979.

    PubMed  CAS  Google Scholar 

  22. Rosenblatt DS, Cooper BA, Lue-Shing S et al. Folate Distribution in Cultured Human Cells: Studies on 5, 10-CH2-H4PteGlu Reductase Deficiency. J Clin Invest 63:1019–1025, 1979.

    Article  PubMed  CAS  Google Scholar 

  23. Rosenblatt DS, Lue-Shing H, Arzoumanian A, Low-Nang L, Matiaszuk N. Methylenetetrahydrofolate reductase (MR) deficiency: Thermolability of residual MR activity, methionine synthase activity, and methylcobalamin levels in cultured fibroblasts. Biochem Med Met Biol 47:221–225, 1992.

    Article  CAS  Google Scholar 

  24. Narisawa K. Brain damage in the infantile type of 5, 10-methylenetetrahydrofolate reductase deficiency. In: Botez MI, Reynolds EH. Folic Acid in Neurology, Psychiatry, and Internal Medicine. New York: Raven Press, 1979, pp 391–400.

    Google Scholar 

  25. Beckman DR, Hoganson G, Berlow S, Gilbert EF. Pathological findings in 5, 10-methylenetetrahydrofolate reductase deficiency. Birth Defects 23:47–64, 1987.

    PubMed  CAS  Google Scholar 

  26. Kanwar YS, Manaligod JR, Wong PWK. Morphologic studies in a patient with homocystinuria due to 5,10-methylenetetrahydrofolate reductase deficiency. Pediatr Res 10:598–609, 1976.

    Article  PubMed  CAS  Google Scholar 

  27. Clayton PT, Smith I, Harding B et al. Subacute combined degeneration of the cord, dementia, and parkinsonism due to an inborn error of folate metabolism. J Neur Neurosurg Psych 49:920–927, 1986.

    Article  CAS  Google Scholar 

  28. Wendel U, Bremer HJ. Betaine in the treatment of homocystinuria due to 5, 10-methylenetetra hydrofolate reductase deficiency. Eur J Pediatr 142:147–150, 1984.

    Article  PubMed  CAS  Google Scholar 

  29. Brandt NJ, Christensen E, Skovby F, Djernes B. Treatment of methylenetetrahydrofolate reductase deficiency from the neonatal period. Amersfoort, The Netherlands: The Society for the Study of Inborn Errors of Metabolism, 1986.

    Google Scholar 

  30. Qureshi AA, Rosenblatt DS, Cooper BA. Inherited disorders of cobalamin metabolism. Crit Rev Onc Hem 17:133–151, 1994.

    Article  CAS  Google Scholar 

  31. Fenton W, Rosenberg LE. Inherited disorders of cobalamin transport and metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) Metabolic and Molecular Bases of Inherited Disease. New York: McGraw-Hill, 1995, pp 1423–1449.

    Google Scholar 

  32. Cooper BA, Rosenblatt DS. Inherited defects of vitamin B12 metabolism. Ann Rev Nutr 7:291–320, 1987.

    Article  CAS  Google Scholar 

  33. Shevell MI, Rosenblatt DS. The neurology of cobalamin. Can J Neur Sci 19:472–486, 1992.

    CAS  Google Scholar 

  34. Tang LH, Chokshi H, Hu CB, Gordon MM, Alpers DH. The intrinsic factor (IF)-cobalamin receptor binding site is located in the amino-terminal portion of IF. J Biol Chem 267:22982–22986, 1992.

    PubMed  CAS  Google Scholar 

  35. Katz M, Cooper BA. Solubilitized receptor for vitamin B12-intrinsic factor complex from human intestine. Br J Haemat 25:569–579, 1974.

    Article  Google Scholar 

  36. Chanarin I, Muir M, Hoffbrand AV, Hughes A. Evidence for an intestinal origin of transcobalamin II during vitamin B12 absorption. Br Med J 11:1453–1455, 1978.

    Article  Google Scholar 

  37. Dan N, Cutler DF. Transcytosis and processing of intrinsic factor-cobalamin in Caco-2 cells. J Biol Chem 269:18849–18855, 1994.

    PubMed  CAS  Google Scholar 

  38. Lindemans J, de Jongh EJ, Brand FC et al. The uptake of R-type cobalamin binding protein by isolated rat liver cells. Biochim Biophys Acta 720:203–210, 1982.

    Article  PubMed  CAS  Google Scholar 

  39. Kanazawa S, Herbert V, Herzlick B, Drivas G, Manusselis C. Removal of cobalamin analogue in bile by enterohepatic circulation of vitamin B12. Lancet 1:707–708, 1983.

    Article  PubMed  CAS  Google Scholar 

  40. Youngdahl-Turner P, Rosenberg LE. Binding and uptake of transcobalamin II by human fibroblasts. J Clin Invest 61:133–141, 1978.

    Article  PubMed  CAS  Google Scholar 

  41. Youngdahl-Turner P, Mellman IS, Allen RH, Rosenberg LE. Protein mediated vitamin uptake: Adsorptive endocytosis of the transcobalamin II-cobalamin complex by cultured human fibroblasts. Exp Cell Res 118:127–134, 1979.

    Article  PubMed  CAS  Google Scholar 

  42. Rosenblatt DS, Cooper BA. Inherited disorders of vitamin B12 utilization. Bioessays 12:331–334, 1990.

    Article  PubMed  CAS  Google Scholar 

  43. Walker GA, Murphy S, Heunnekens FH. Enzymatic conversion of vitamin B12 to aenosyl-B12: Evidence for the existence of two separate reducing systems. Arch Biochem Biophys 134:95–102, 1969.

    Article  PubMed  CAS  Google Scholar 

  44. Pezacka EH. Identification and characterization of two enzymes involved in the intracellular metabolism of cobalamin. Cyanocobalamin beta-ligand transferase and microsomal cob(III)alamin reductase. Biochim Biophys Acta 1157:167–177, 1993.

    Article  PubMed  CAS  Google Scholar 

  45. Matthews RG, Jencks DA, Frasca V, Matthews KD. Methionine biosynthesis in chemistry and biology of pteridines. In: Cooper BA, Whitehead VM (eds) Pteridines and Folic Acid Derivatives. New York: de Gruyter, 1986, pp 697–707.

    Google Scholar 

  46. Fenton N, Rosenberg LE. Mitochondrial metabolism of hydoxocobalamin: Synthesis of adenosylcobalamin by intact rat mitochondria. Arch Biochem Biophys 189:441–447, 1978.

    Article  PubMed  CAS  Google Scholar 

  47. Rosenblatt DS, Cooper BA. Inherited disorders of vitamin B12 metabolism. Blood Reviews 1:177–182, 1987.

    Article  PubMed  CAS  Google Scholar 

  48. Carmel R. Plasma R binder deficiency. N Engl J Med 318:1401–1402, 1988.

    Article  PubMed  CAS  Google Scholar 

  49. Carmel R, Herbert V. Deficiency of vitamin B12 alpha globulin in two brothers. Blood 33:1–12, 1969

    PubMed  CAS  Google Scholar 

  50. Sigal SH, Hall CA, Antel JP. Plasma R binder deficiency and neurologie disease. N Engl J Med 317:1330–1332, 1988.

    Article  Google Scholar 

  51. Yang Y-M, Ducos R, Rosenberg AJ, et al. Cobalamin malabsorption in three siblings due to abnormal intrinsic factor that is markedly susceptible to acid and proteolysis. J Clin Invest 76:2057–2065, 1985.

    Article  PubMed  CAS  Google Scholar 

  52. Spurling CL, Sacks MS, Jiji RM. Juvenile pernicious anemia. N Engl J Med 271:995–1003, 1964.

    Article  PubMed  CAS  Google Scholar 

  53. Levine JS, Allen RH. Intrinsic factor within parietal cells of patients with juvenile pernicious anemia: A retrospective immunohistochemical study. Gastroenterology 88:1132–1136, 1985.

    PubMed  CAS  Google Scholar 

  54. Katz M, Mehlman CS, Allen RH. Isolation and characterization of an abnormal intrinsic factor. J Clin Invest 53:1274, 1974.

    Article  PubMed  CAS  Google Scholar 

  55. Chanarin I. The Megaloblastic Anaemias. London: Blackwell Scientific Publishers, 1979.

    Google Scholar 

  56. Wulffraat NM, De Schryver J, Bruin M, Pinxteren-Nagler E, Van Dijken PJ. Failure to thrive is an early symptom to the Imerslund Gräsbeck syndrome. Am J Hem Onc 16:177–180, 1994.

    CAS  Google Scholar 

  57. Fyfe JC, Ramanujam KS, Ramaswamy K, Patterson DF, Seetharam B. Defective brush-border expression of intrinsic factor-cobalamin receptor in canine inherited intestinal cobalamin malabsorption. J Biol Chem 1266:4489–4494, 1991.

    Google Scholar 

  58. Fyfe JC, Giger U, Hall CA et al. Inherited selective intestinal cobalamin malabsorption and cobalamin deficiency in dogs. Pediatr Res 29:24–31, 1991.

    Article  PubMed  CAS  Google Scholar 

  59. Burman JF, Walker WJ, Smith JA et al. Absent ileal uptake of IF-bound-vitamin B12 in the Imerslund-Gräsbeck syndrome (familial vitamin B12 malabsorption with proteinuria). Gut 26:311–314, 1985.

    Article  PubMed  CAS  Google Scholar 

  60. Seligman PA, Steiner LL, Allen RH. Studies of a patient with megaloblastic anemia and an abnormal transcobalamin II. N Engl J Med 303:1209–1212, 1980.

    Article  PubMed  CAS  Google Scholar 

  61. Hall CA. The neurologic aspects of transcobalamin II deficiency. Br J Haematol 80:117–120, 1992.

    Article  PubMed  CAS  Google Scholar 

  62. Hitzig WH, Dohmann U, Pluss HJ, Vischer D. Hereditary transcobalamin II deficiency: Clinical findings in a new family. J Pediatr 85:622–628, 1974.

    Article  PubMed  CAS  Google Scholar 

  63. Eiberg H, Moller N, Mohr J, Nielsen LS. Linkage of transcobalamin II (TC2) to the P blood group system and assignment to chromosome 22. Clin Genet 29:354–359, 1986.

    Article  PubMed  CAS  Google Scholar 

  64. Platica O, Janeczko R, Quadros EV et al. The cDNA sequence and the deduced amino acid sequence of human transcobalamin II show homology with rat intrinsic factor and human transcobalamin I. J Biol Chem 266:7860–7863, 1991.

    PubMed  CAS  Google Scholar 

  65. Li N, Seetharam S, Lindemans J et al. Isolation and sequence analysis of variant forms of human transcobalamin II. Biochim Biophys Acta 1172:21–30, 1993.

    Article  PubMed  CAS  Google Scholar 

  66. Li N, Rosenblatt DS, Kamen BA, Seetharam S, Seetharam B. Identification of two mutant alleles of transcobalamin II in an affected family. Hum Molec Genet 3:1835–1840, 1994.

    Article  PubMed  CAS  Google Scholar 

  67. Li N, Rosenblatt DS, Seetharam B. Nonsense mutations in human transcobalamin II deficiency. Biochem Biophy Res Commun 204:1111–1118, 1994.

    Article  CAS  Google Scholar 

  68. Rosenblatt DS. Inherited errors of cobalamin metabolism: An overview. In: Bhatt HR, James VHT, Besser GM, Bottazzo GF, Keen H (eds) Advances in Thomas Addison’s diseases. Briston, UK: Journal of Endocrinology Ltd., 1994, pp 303–313.

    Google Scholar 

  69. Rosenblatt DS, Aspler AL, Shevell MI, Pletcher BA, Fenton WA, Seashore MR. Clinical heterogeneity and progosis in combined methylmalonic aciduria and homocytinuria (cblC). J Inter Metab Dis 20:528–538, 1997.

    Article  CAS  Google Scholar 

  70. Mitchell GA, Watkins D, Melancon SB, et al. Clinical heterogeneity in cobalamin C variant of combined homocystinuria and methylmalonic aciduria. J Pediatr 108:410–415, 1986.

    Article  PubMed  CAS  Google Scholar 

  71. Russo P, Doyon J, Sonsino E, Ogier H, Saudubray JM. A congenital anomaly of vitamin B12 metabolism: A study of three cases. Hum Pathol 23:504–512, 1992.

    Article  PubMed  CAS  Google Scholar 

  72. Geraghty MT, Perlman EJ, Martin LS et al. Cobalamin C defect associated with hemolytic-uremic syndrome. J Pediatr 120:934–937, 1992.

    Article  PubMed  CAS  Google Scholar 

  73. Robb RM, Dowton SB, Fulton AB, Levy HL. Retinal degeneration in vitamin B12 disorder associated with methylmalonic aciduria and sulfur amino acid abnormalities. Am J Ophthalmol 97:691–696, 1984.

    PubMed  CAS  Google Scholar 

  74. Traboulski EI, Silva JC, Geraghty MT et al. Ocular histopathologic characteristics of cobalamin C type vitamin B12 defect with methylmalonic aciduria and homocystinuria. Am J Ophthal 113:269–280, 1992.

    Google Scholar 

  75. Shinnar S, Singer HS. Cobalamin C mutation (methylmalonic aciduria and homocystinuria) in adolescence: A treatable cause of dementia and myelopathy. NEJM 311:451–454, 1984.

    Article  PubMed  CAS  Google Scholar 

  76. Stern JR, Friedmann DC. Vitamin B12 and methylmalonyl CoA isomerase I: Vitamin B12 and propionate metabolism. Biochem Biophys Res Commun 2:82, 1960.

    Article  CAS  Google Scholar 

  77. Pezacka EH, Rosenblatt DS. Intracellular metabolism of cobalamin: Altered activities of b-axial-ligand transferase and microsomal cob(III)alamin reducatase in cblC and cblD fibroblasts. In: Bhatt HR, James VHT, Besser GM, Bottazzo GF, Keen H (eds) Advances in Thomas Addison’s diseases. Briston, UK: Journal of Endocrinology Ltd., 1994, pp 315–323.

    Google Scholar 

  78. Zammarchi E, Lippi A, Falorni S et al. cblC Disease: Case report and monitoring of a pregnancy at risk by chorionic villus sampling. Clin Invest Med 13:139–142, 1990.

    PubMed  CAS  Google Scholar 

  79. Chadefaux-Vekemans B, Rolland MO, Lyonet S et al. Prenatal diagnosis of combined methylmalonic aciduria and homocystinuria (cblC or cblD mutant). Prenatal Diagn 14:417–418, 1994.

    Article  CAS  Google Scholar 

  80. Rosenblatt DS, Laframboise R, Pichette J et al. New disorder of vitamin B12 metabolism (cobalamin F) presenting as methylmalonic aciduria. Pediatrics 78:51–54, 1986.

    PubMed  CAS  Google Scholar 

  81. Shih VE, Axel SM, Tewksbury JC, Watkins D, Cooper BA, Rosenblatt DS. Defective lysosomal release of vitamin B12 (cblF): A hereditary metabolic disorder associated with sudden death. Am J Hum Genet 33:555–563, 1989.

    CAS  Google Scholar 

  82. Wong LTK, Rosenblatt DS, Applegarth, DA, Davidson AGF. Diagnosis and treatment of a child with cblF disease. Clin Invest Med 15:A111, 1992.

    Google Scholar 

  83. MacDonald MR, Wiltse HE, Bever JL, Rosenblatt DS. Clinical heterogeneity in two patients with cblF disease. Am J Hum Genet 15:A353, 1992.

    Google Scholar 

  84. Rosenblatt DS, Hosack A, Matiaszuk NV, Cooper BA, Laframboise R. Defect in vitamin B12 release from lyso-somes: Newly described inborn error of vitamin B12 metabolism. Science 228:1319–1321, 1985.

    Article  PubMed  CAS  Google Scholar 

  85. Vassiliadis A, Rosenblatt DS, Cooper BA, Bergeron JJ. Lysosomal cobalamin accumulation in fibroblasts from a patient with an inborn error of cobalamin metabolism (cblF complementation group): Visualization by electron microscope radioautography. Exp Cell Res 195:295–302, 1991.

    Article  PubMed  CAS  Google Scholar 

  86. Watkins D, Rosenblatt DS. Genetic heterogeneity among patients with methylcobalamin deficiency. J Clin Invest 81:1690–1694, 1988.

    Article  PubMed  CAS  Google Scholar 

  87. Watkins D, Rosenblatt DS. Functional methionine synthase deficiency (cblE and cblG): Clinical and biochemical heterogeneity. Am J Hum Genet 34:427–434, 1989.

    CAS  Google Scholar 

  88. Hall CA. Function of vitamin B12 in the central nervous system as revealed by congenital defects. Am J Hematol 34:121–127, 1990.

    Article  PubMed  CAS  Google Scholar 

  89. Carmel R, Watkins D, Goodman SI, Rosenblatt DS. Hereditary defect of cobalamin metabolism (cblG mutation) presenting as a neurologic disorder in adulthood. N Engl J Med 318:1738–1741, 1988.

    Article  PubMed  CAS  Google Scholar 

  90. Schuh S, Rosenblatt DS, Cooper BA et al. Homocystinuria and megaloblastic anemia responsive to vitamin B12 therapy: An inborn error of metabolism due to a defect in cobalamin metabolism. N Engl J Med 310:686–690, 1984.

    Article  PubMed  CAS  Google Scholar 

  91. Rosenblatt DS, Cooper BA, Pottier A, Lue-Shing H, Matiaszuk N, Grauer K. Altered vitamin B12 metabolism in fibroblasts from a patient with megaloblastic anemia and homocystinuria due to a new defect in methionine biosynthesis. J Clin Invest 74:2149–2156, 1984.

    Article  PubMed  CAS  Google Scholar 

  92. Rosenblatt DS, Cooper BA, Schmutz SM, Zaleski SM, Casey RE. Prenatal vitamin B12 therapy of a fetus with methylcobalamin deficiency (cobalamin E disease). Lancet 1:1127–1129, 1985.

    Article  PubMed  CAS  Google Scholar 

  93. Mahoney MJ, Hart AC, Steen VD, Rosenberg LE. Methylmalonic acidemia: Biochemical heterogeneity in defects of 5′deoxyadenosylcobalamin synthesis. Proc Natl Acad Sci (USA) 72:2799–2803, 1975.

    Article  PubMed  CAS  Google Scholar 

  94. Fenton WA, Rosenberg LE. The defect in the cblB class of human methylmalonic acidemia: Deficiency of cob(I)alamin adenosyltransferase activity in extracts of cultured fibroblasts. Biochem Biophys Res Commun 98:283–289, 1981.

    Article  PubMed  CAS  Google Scholar 

  95. Ampola MG, Mahoney MJ, Nakamura E, Tanaka K. Prenatal therapy of a patient with vitamin B12 responsive methylmalonic acidemia. N Engl J Med 293:313–317, 1975.

    Article  PubMed  CAS  Google Scholar 

  96. Matsui SM, Mahoney MJ, Rosenberg LE. The natural history of the inherited methylmalonic acidemias. N Engl J Med 308:857–861, 1983.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rosenblatt, D.S. (1997). Inherited Disorders of Folate and Cobalamin. In: Graham, I., Refsum, H., Rosenberg, I.H., Ueland, P.M., Shuman, J.M. (eds) Homocysteine Metabolism: From Basic Science to Clinical Medicine. Developments in Cardiovascular Medicine, vol 196. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5771-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5771-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7645-3

  • Online ISBN: 978-1-4615-5771-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation