Part of the book series: Progress in Experimental Cardiology ((PREC,volume 2))

  • 111 Accesses

Summary

Chronic, pathophysiological elevations of angiotensin (Ang) II cause myocyte necrosis and coronary vascular damage. These adverse effects are mediated by the angiotensin II type 1 (AT1) receptor and are, therefore, preventable with AT1 receptor blockade. Additionally, the intracellular signaling cascade stimulated by elevations in Ang II results in an AT1 receptor-mediated catecholamine release, and the myocardial damage can also be attenuated by β1-adrenergic receptor blockade. The restriction of myocardial damage to the first 3 days of Ang II infusion is due to subsequent downregulation of the β1-adrenergic receptor population. Discontinuation of the Ang II infusion results in a return to normal β1-adrenergic receptor density, which makes the myocardium susceptible once again to subsequent elevations of Ang II. This Ang II-related myocardial damage could play an important role in the pathogenesis of heart failure post-myocardial infarction or in other cardiac disease states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 245.03
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 320.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 320.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gavras H, Kremer D, Brown JJ, Gray B, Lever AF, MacAdam RF, Medina A, Morton JJ, Robertson JIS. 1975. Angiotensin-and norepinephrine-induced myocardial lesions: Experimental and clinical studies in rabbits and man. Am Heart J 89:321–332.

    Article  PubMed  CAS  Google Scholar 

  2. Gavras H, Brown JJ, Lever AF, MacAdam RF, Robertson JIS. 1971. Acute renal failure, tubular necrosis, and myocardial infarction induced in the rabbit by intravenous angiotensin II. Lancet 2:19–22.

    Article  PubMed  CAS  Google Scholar 

  3. Tan LB, Jalil JE, Pick R, Janicki JS, Weber KT. 1991. Cardiac myocyte necrosis induced by angiotensin II. Circ Res 69:1185–1195.

    Article  PubMed  CAS  Google Scholar 

  4. Staroukine M, Devriendt J, Decoodt P, Verniory A. 1984. Relationship between plasma epinephrine, norepinephrine, dopamine, and angiotensin II concentrations, renin activity, hemodynamic state and prognosis in acute heart failure. ACTA Cardiol 39:131–138.

    PubMed  CAS  Google Scholar 

  5. Kuroda T, Shida H. 1983. Angiotensin II induced myocardial damage with a special reference to low cardiac output syndrome. Jpn Heart J 24:235–243.

    Article  PubMed  CAS  Google Scholar 

  6. Kabour A, Henegar JR, Janicki JS. 1994. Angiotensin II (AII)-induced myocyte necrosis: Role of the All receptor. J Cardiovasc Pharmacol 23:547–553.

    Article  PubMed  CAS  Google Scholar 

  7. Rodrigues MAM, Bregagnollo EA, Montenegro MR, Tucci PJF. 1992. Coronary vascular and myocardial lesions due to experimental constriction of the abdominal aorta. International J Cardiol 35:253–257.

    Article  CAS  Google Scholar 

  8. Cowan MJ, Giddens WE, Reichenbach DD. 1983. Selective myocardial cell necrosis in non-human primates. Arch Pathol Lab Med 107:34–39.

    PubMed  CAS  Google Scholar 

  9. Giacomelli F, Anversa P, Wiener J. 1976. Effect of angiotensin-induced hypertension on rat coronary arteries and myocardium. Am J Pathol 84:111–138.

    PubMed  CAS  Google Scholar 

  10. Bhan RD, Giacomelli F, Wiener J. 1978. Ultrastructure of coronary arteries and myocardium in experimental hypertension. Exp Mol Pathol 29:66–81.

    Article  PubMed  CAS  Google Scholar 

  11. Bhan RD, Giacomelli F, Wiener J. 1982. Adrenoreceptor blockade in angiotensin-induced hypertension. Am J Pathol 108:60–71.

    PubMed  CAS  Google Scholar 

  12. Kabour A, Henegar JR, Devineni VR, Janicki JS. 1995. Prevention of angiotensin II induced myocyte necrosis and coronary vascular damage by lisinopril and losartan in the rat. Cardiovasc Res 29:543–548.

    PubMed  CAS  Google Scholar 

  13. Reddy HK, Campbell SE, Janicki JS, Zhou G, Weber KT. 1993. Coronary microvascular fluid flux and permeability: Influence of angiotensin II, aldosterone, and acute arterial hypertension. J Lab Clin Med 121:510–521.

    PubMed  CAS  Google Scholar 

  14. Laine GA, Allen SJ. 1996. Left ventricular myocardial edema: Lymph flow, interstitial fibrosis and cardiac function. Circ Res 68:1713–1721.

    Article  Google Scholar 

  15. Jalil JE, Janicki JS, Pick R, Abrahams C, Weber KT. 1989. Fibrosis-induced reduction of endomyocardium in the rat after isoproterenol treatment. Circ Res 65:258–264.

    Article  PubMed  CAS  Google Scholar 

  16. Brilla CG, Janicki JS, Weber KT. 1991. Impaired diastolic function and coronary reserve in genetic hypertension. Circ Res 69:107–115.

    Article  PubMed  CAS  Google Scholar 

  17. Lefroy DC, Wharton J, Crake T, Knock GA, Rutherford RAD, Suzuki T, Morgan K, Polak JM, Poole-Wilson PA. 1996. Regional changes in angiotensin II receptor density after experimental myocardial infarction. J Mol Cell Cardiol 28:429–440.

    Article  PubMed  CAS  Google Scholar 

  18. Allen IS, Cohen NM, Gaa ST, Lederer WJ, Rogers TB. 1988. Angiotensin II increases spontaneous contractile frequency and stimulates calcium current in cultured neonatal rat heart myocytes: Insights into the underlying biochemical mechanisms. Circ Res 62:524–534.

    Article  PubMed  CAS  Google Scholar 

  19. Bishop SP, Meisen LR. 1976. Myocardial necrosis, fibrosis, and DNA synthesis in experimental cardiac hypertrophy induced by sudden pressure overload. Circ Res 39:238–245.

    Article  PubMed  CAS  Google Scholar 

  20. Henegar JR, Brower GL, Kabour A, Janicki JS. 1995. Catecholamine response to chronic ANG II infusion and its role in myocyte and coronary vascular damage. Am J Physiol 269:H1564–H1569.

    PubMed  CAS  Google Scholar 

  21. Campbell SE, Brilla CG, Weber KT. 1994. Myocardial fibrosis: Structural basis for pathological remodeling and the role of the renin-angiotensin-aldosterone system. In The cardiac-renin-angiotensin system. Ed. K Lindpainter and D Ganten, 153–165. Armonk, NY: Futura Publishing.

    Google Scholar 

  22. Benjamin IJ, Jalil JE, Tan LB, Cho K, Weber KT, Clark WA. 1989. Isoproterenol-induced myocardial fibrosis in relation to myocyte necrosis. Circ Res 65:657–670.

    Article  PubMed  CAS  Google Scholar 

  23. Van Vliet PD, Burghell HB, Titus JL. 1966. Focal myocarditis associated with pheochromocytoma. New Eng J Med 274:1102–1108.

    Article  PubMed  Google Scholar 

  24. Mann DL, Kent RL, Parsons B, Cooper G. 1992. Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation 85:790–804.

    Article  PubMed  CAS  Google Scholar 

  25. Speth RC, Khosla MC, Spech MM, Ferrario CM. 1981. Rat (Ile5) but not bovine (Val5) angiotensin raises plasma norepinephrine in rats. Hypertension 3:II-25-II-29.

    Google Scholar 

  26. Pilati CF, Bosso FJ, Maron MB. 1992. Factors involved in left ventricular dysfunction after massive sympathetic activation. Am J Physiol 263:H784–H791.

    PubMed  CAS  Google Scholar 

  27. Kawabata M. 1970. The actions of synthetic angiotensin II on adrenal and myocardial catechola-mines. Jap Circ J 34:587–593.

    Article  PubMed  CAS  Google Scholar 

  28. Cline WH. 1971. Release of catecholamines during the induction of and recovery from tachyphylaxis to angiotensin II. J Pharmacol Exp Ther 179:532–542.

    PubMed  CAS  Google Scholar 

  29. Henegar JR, Janicki JS. 1996. Sympathetic neuron norepinephrine is responsible for angiotensin II-induced myocardial damage, (abstract) Circulation 94:1659.

    Google Scholar 

  30. Ratajska A, Campbell SE, Sun Y, Weber KT. 1994. Angiotensin II associated cardiac myocyte necrosis: Role of adrenal catecholamines. Cardiovasc Res 28:684–690.

    Article  PubMed  CAS  Google Scholar 

  31. Eisenhofer G, Friberg P, Rundqvist B, Quyyumi AA, Lambert G, Kaye DM, Kopin IJ, Goldstein DS, Esler MD. 1996. Cardiac sympathetic nerve function in congestive heart failure. Circulation 93:1667–1676.

    Article  PubMed  CAS  Google Scholar 

  32. Jones CR, Molenar P, Summers RJ. 1989. New views of human cardiac β-adrenoceptors. J Mol Cell Cardiol 21:519–535.

    Article  PubMed  CAS  Google Scholar 

  33. Murphree SS, Saffitz JE. 1987. Quantitative autoradiography delineation of the distribution of adrenergic receptors in canine and feline left ventricular myocardium. Circ Res 60:568–579.

    Article  PubMed  CAS  Google Scholar 

  34. Tan LB, Benjamin IJ, Clark WA. 1992. β adrenergic receptor desensitisation may serve a cardioprotective role. Cardiovasc Res 26:608–614.

    Article  PubMed  CAS  Google Scholar 

  35. Henegar JR, Janicki JS. 1996. Downregulation of the beta adrenergic receptors during chronic angiotensin II infusion, (abstract) Circulation 94:1672.

    Google Scholar 

  36. Page DL, Caulfield JB, Kastor JA, DeSanctis RW, Sanders CA. 1971. Myocardial changes associated with cardiogenic shock. New Eng J Med 285:133–137.

    Article  PubMed  CAS  Google Scholar 

  37. Corday E, Kaplan L, Meerbaum S, Brasch J, Constantini C, Lang TW, Gold H, Rubins S, Osher J. 1975. Consequences of coronary arterial occlusion on remote myocardium: Effects of occlusion and reperfusion. Am J Cardiol 36:385–394.

    Article  PubMed  CAS  Google Scholar 

  38. Beltrami CA, Finato N, Rocco M, Feruglio GA, Puricelli C, Cigola E, Quaini F, Sonnenblick EH, Olivetti G, Anversa P. 1994. Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation 89:151–163.

    Article  PubMed  CAS  Google Scholar 

  39. Kabour A, Henegar JR, Janicki JS. 1993. Angiotensin converting enzyme inhibition attenuates myocyte necrosis remote to myocardial infarction, (abstract) Clin Res 41:658A.

    Google Scholar 

  40. Pfeffer MA, Pfeffer JM, Steinberg C, Finn P. 1985. Survival after an experimental myocardial infarction: Beneficial effects of long-term therapy with captopril. Circulation 72:406–412.

    Article  PubMed  CAS  Google Scholar 

  41. The CONCENSUS Trial Study Group. 1987. Effects of enalapril on mortality in severe congestive heart failure: Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). New Engl J Med 316:1429–1437.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Henegar, J.R., Brower, G.L., Janicki, J.S. (1998). Characteristics and Mechanisms of Angiotensin II-Related Myocardial Damage. In: Dhalla, N.S., Zahradka, P., Dixon, I.M.C., Beamish, R.E. (eds) Angiotensin II Receptor Blockade Physiological and Clinical Implications. Progress in Experimental Cardiology, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5743-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5743-2_37

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7631-6

  • Online ISBN: 978-1-4615-5743-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation