Cobalamin-Dependent and Cobalamin-Independent Methionine Synthases in Escherichia coli: Two Solutions to the Same Chemical Problem

  • Chapter
Chemistry and Biology of Pteridines and Folates

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 338))

Abstract

Two genes encoding proteins with methionine synthase activity are found in Escherichia coli. Both enzymes use methyltetrahydrofolate as a methyl donor to catalyze the conversion of homocysteine to methionine, as shown below:

$$ C{H_3} -{H_4}PteGl{u_n} + Homocysteine(RHS) -------->{H_4}PteGl{u_n} + Methionine(RSC{H_3}) $$

The metH gene encodes a cobalamin-dependent methionine synthase (MetH). This protein is monomelic, with a deduced molecular weight of 136,055.1 It can use CH3-H4PteGlu1 as a substrate, and requires a reducing system and AdoMet for activation.2,3 The metE gene encodes a cobalamin-independent methionine synthase that requires methyltetrahydrofolate substrates with at least two glutamyl residues and is completely inactive with CH3-H4PteGlu1.4 This enzyme shows no requirement for reductive activation, but does require phosphate ion and magnesium for optimal rates of catalysis.5 It has a deduced molecular weight of 84,654,6 in good agreement with the value of 84,000 obtained by ultracentrifugation of the native enzyme.5 Both the metH 1,7,8 and metE 6,9genes have been sequenced, and their coding sequences show no detectable homologies. Thus these two proteins appear to have evolved independently to perform highly similar methyl transfers from N5 of methyltetrahydrofolate to the sulfur of homocysteine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 9.99
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J.T. Drummond, R. Loo, and R.G. Matthews, 1993, Electrospray mass spectrometric analysis of the domains of a large enzyme: Observation of the occupied cobalamin-binding domain and redefinition of the carboxyl terminus of methionine synthase, Biochemistry: submitted for publication.

    Google Scholar 

  2. J.H. Mangum and K.G. Scrimgeour,, 1962, Cofactor requirements and intermediates in methionine biosynthesis, Fed. Proc. 21:242.

    Google Scholar 

  3. M.A. Foster, M.J. Dilworth, and D.D. Woods, 1964, Cobalamin and the synthesis of methionine by Escherichia coli, Nature 201:39.

    Article  PubMed  CAS  Google Scholar 

  4. E. Burton, J. Selhub, and W. Sakami, 1969, The substrate specificity of 5-methyltetrahydropteroyl-triglutamate-homocysteine methyltransferase, Biochem. J. 111:193.

    Google Scholar 

  5. CD. Whitfield, E J. Steers, Jr., and H. Weissbach, 1970, Purification and properties of 5-methyltetra-hydropteroyltriglutamate-homocysteine transmethylase, J. Biol. Chem. 245:390.

    PubMed  CAS  Google Scholar 

  6. J.C. González, R.V. Banerjee, S. Huang, J.S. Sumner, and R.G. Matthews, 1992, Comparison of cobalamin-independent and cobalamin-dependent methionine synthases from Escherichia coli: Two solutions to the same chemical problem, Biochemistry 31:6045.

    Article  PubMed  Google Scholar 

  7. R.V. Banerjee, N.L. Johnston, J.K. Sobeski, P. Datta, and R.G. Matthews, 1989, Cloning and sequence analysis of the Escherichia coli metH gene encoding cobalamin-dependent methionine synthase and isolation of a tryptic fragment containing the cobalamin-binding domain, J. Biol. Chem. 2(54:13888.

    Google Scholar 

  8. I.G. Old, D. Margarita, R.E. Glass, and I. Saint Girons, 1990, Nucleotide sequence of the metH gene of Escherichia coli K-12 and comparison with that of Salmonella typhimurium LT2, Gene 87:15.

    Article  PubMed  CAS  Google Scholar 

  9. E.M. Maxon, B. Redfield, X.-Y. Cai, R. Shoeman, K. Fujita, W. Fisher, G. Stauffer, H. Weissbach, and N. Brot, 1989, Regulation of methionine biosynthesis in Escherichia coli: effect of the MetR protein in metE and metH expression, Proc. Natl. Acad. Sci. U. S. A. 5:5:85.

    Article  Google Scholar 

  10. K. Fujii, and F.M. Huennekens, 1974, Activation of methionine synthetase by a reduced triphophopyridine nucleotide-dependent flavoprotein system, J. Biol. Chem. 249:6145.

    Google Scholar 

  11. J.T. Drummond, S. Huang, R.M. Blumenthal, and R.G. Matthews, 1993, Assignment of enzymatic function to specific protein regions of cobalamin-dependent methionine synthase from Escherichia coli ,Biochemistry: submitted for publication.

    Google Scholar 

  12. C.L. Luschinsky, J.T. Drummond, R.G. Matthews, and M.L. Ludwig, 1992, Crystallization and preliminary x-ray diffraction studies of the cobalamin-binding domain of methionine synthase from Escherichia coli, J. Mol. Biol. 225:551.

    Article  Google Scholar 

  13. H. Vetter, Jr., and J. Knappe, 1971, Flavodoxin and ferredoxin of Escherichia coli, Hoppe-Seyler’s Z. Physiol. Chem. 552:443.

    Google Scholar 

  14. J. Harder, R. Eliasson, E. Pontis, M.D. Ballinger, and P. Reichard, 1992, Activation of the anaerobic ribonucleotide reductase from Escherichia coli by S-adenosylmethionine, J. Biol. Chem. 2(57:25548.

    Google Scholar 

  15. C. Osborne, L.-M. Chen, and R.G. Matthews, 1991, Isolation, cloning, map** and nucleotide sequencing of the gene encoding flavodoxin in Escherichia coli, J. Bacteriol. 173:1729.

    PubMed  CAS  Google Scholar 

  16. V. Bianchi, P. Reichard, R. Eliasson, E. Pontis, M. Krook, H. Jornvall, and E. Haggard-Ljungquist, 1993, E. coli Ferredoxin NADP+ reductase: Activation of E. coli anaerobic ribonucleotide reduction, cloning of the gene (fpr) and overexpression of the protein. J. Bacteriol. 175: in press.

    Google Scholar 

  17. J. Knappe, F.A. Neugebauer, H.P. Blaschkowski, and M. Ganzler, 1984, Posttranslational activation introduces a free radical into pyruvate formate-lyase, Proc. Natl. Acad. Sci. USA 81:1332.

    Article  PubMed  CAS  Google Scholar 

  18. A.F.V. Wagner, M. Frey, F.A. Neugebauer, W. Schafer, and J. Knappe, 1992, The free radical in pyruvate formate-lyase is located on glycine-734, Proc. Natl. Acad. Sci. USA 89:996.

    Article  PubMed  CAS  Google Scholar 

  19. X. Sun, J. Harder, M. Krook, H. Jornvall, B.-M. Sj o berg, and P. Reichard, 1993, A possible glycine radical in anaerobic ribonucleotide reductase from Escherichia coli: nucleotide sequence of the cloned nrdD gene, Proc. Natl. Acad. Sci. 90:511.

    Google Scholar 

  20. R.T. Taylor and H. Weissbach, 1969, Escherichia coli B N5-methyltetrahydrofolate-homocysteine methyltransferase: sequential formation of bound methylcobalamin with S-adenosyl-L-methionine and N5-methyltetrahydrofolate, Arch. Biochem. Biophys. 129:728.

    Article  PubMed  CAS  Google Scholar 

  21. K. Fujii, and F.M. Huennekens, 1979, Methionine synthase: characterization of protein components and mechanisms for activation and catalysis, in “Biochemical Aspects of Nutrition,” K. Yagi, Ed., p. 173, University Park Press, Baltimore.

    Google Scholar 

  22. R.V. Banerjee, S.R. Harder, S.W. Ragsdale, and R.G. Matthews, 1990, Mechanism of reductive activation of cobalamin-dependent methionine synthase: an electron paramagnetic resonance spectroelectrochemical study, Biochemistry 29:1129.

    Article  PubMed  CAS  Google Scholar 

  23. V. Frasca, B.S. Riazzi, and R.G. Matthews, 1986, In vitro inactivation of methionine synthase by nitrous oxide, J. Biol. Chem. 2(261:15823.

    PubMed  CAS  Google Scholar 

  24. T.M. Zydowsky, L.F. Courtney, V. Frasca, K. Kobayashi, H. Shimizu, L.-D. Yuen, R.G. Matthews, S.J. Benkovic, and H.G. Floss, 1986, Stereochemical analysis of the methyl transfer catalyzed by cobalamin-dependent methionine synthase from Escherichia coli B, J. Am. Chem. Soc. 108:3152.

    Article  CAS  Google Scholar 

  25. K.L. Brown, 1982, Synthesis of organocobalt complexes, in “B12, Volume 1: Chemistry,” D. Dolphin, Ed., p. 245, Wiley Interscience, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Drummond, J.T., Matthews, R.G. (1993). Cobalamin-Dependent and Cobalamin-Independent Methionine Synthases in Escherichia coli: Two Solutions to the Same Chemical Problem. In: Ayling, J.E., Nair, M.G., Baugh, C.M. (eds) Chemistry and Biology of Pteridines and Folates. Advances in Experimental Medicine and Biology, vol 338. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2960-6_142

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2960-6_142

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6287-6

  • Online ISBN: 978-1-4615-2960-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation