Exploring Potential Surface Landscapes and How they Govern Dynamics

  • Chapter
Linking the Gaseous and Condensed Phases of Matter

Part of the book series: NATO ASI Series ((NSSB,volume 326))

  • 264 Accesses

Abstract

The subject of multidimensional potential surfaces and the dynamics on those surfaces was just reviewed by this writer 1, and the closely related topic of the analytic representation of potential surfaces, largely of small systems, had been reviewed shortly before by Schatz2. Consequently we will here very tersely review some of the fundamentals, briefly survey aspects of the subject treated in those reviews and discuss some aspects not covered in those reviews.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 9.99
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 49.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. S. Berry, Potential Surfaces and Dynamics: What Clusters Tell Us, Chem. Revs, (in press): (1993).

    Google Scholar 

  2. G. C. Schatz, The analytic representation of electronic potential energy surfaces, Revs. Mod. Phys. 61: 669 (1989).

    Article  ADS  Google Scholar 

  3. B. Sutcliffe, The coupling of nuclear and electronic motions in molecules, J. Chem. Soc. Faraday Trans. 89: 2321 (1993).

    Article  Google Scholar 

  4. J. N. Murrell, S. Carter, S. C. Farantos, P. Huxley and A. J. C. Varandas. “Molecular Potential Energy Functions,” Wiley, New York (1984).

    Google Scholar 

  5. D. M. Hirst. “Potential Energy Surfaces,” Taylor and Francis, London (1985).

    Google Scholar 

  6. T. H. Dunning Jr. and L. B. Harding, in: “Theory of Chemical Reaction Dynamics,” M. Baer. ed., CRC Press, Boca Raton, Florida (1985).

    Google Scholar 

  7. J. E. Lennard-Jones, Proc. Roy. Soc. A. 106: 463 (1924).

    Article  ADS  Google Scholar 

  8. R. A. Aziz and H. H. Chen, J. Chem. Phys. 67: 5719 (1977).

    Article  ADS  Google Scholar 

  9. R. A. Aziz, Molec. Phys. 38: 177 (1979).

    Article  ADS  Google Scholar 

  10. R. A. Aziz and M. J. Slaman, The argon and krypton interatomic potentials revisited, Mol. Phys. 58: 679 (1986).

    Article  ADS  Google Scholar 

  11. R. A. Aziz, A highly accurate interatomic potential for argon, J. Chem. Phys. 99: 4518 (1993).

    Article  ADS  Google Scholar 

  12. M. P. Tosi and F. G. Fumi, J. Phys. Chem. Solids. 25: 45 (1964).

    Article  ADS  Google Scholar 

  13. D. O. Welch, O. W. Lazareth, G. J. Dienes and R. D. Hatcher, Alkali halide molecules: configurations and characteristics of dimers and trimers, J. Chem. Phys. 64: 835 (1976).

    Article  ADS  Google Scholar 

  14. D. O. Welch, O. W. Lazareth, G. J. Dienes and R. D. Hatcher, Clusters of alkali halide molecules, J. Chem. Phys. 68: 2159 (1978).

    Article  ADS  Google Scholar 

  15. R. S. Berry, Optical Spectra of the Alkali Halide Molecules, in: “Alkali Halide Vapors,” P. Davidovits and D. L. McFadden. ed., Academic Press, New York (1979).

    Google Scholar 

  16. W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling. “Numerical Recipes,” Cambridge University Press, Cambridge (1986).

    Google Scholar 

  17. J. W. Mclver Jr. and A. Komornicki, Structure of Transition States in Organic Reactions. General Theory and an Application to the Cyclobutene-Butadiene Isomerization Using a Semiempirical Molecular Orbital Method, J. Am. Chem. Soc. 94: 2625 (1972).

    Article  Google Scholar 

  18. A. Komornicki and J. W. McIver Jr., J. Am. Chem. Soc. 95: 4512 (1973).

    Article  Google Scholar 

  19. A. Komornicki and J. W. McIver Jr., Structure of Transition States. III. A MINDO/2 Study of the Cyclization of 1, 3, 5-Hexatriene to 1, 3-Cyclohexadiene, J. Am. Chem. Soc. 96: 5798 (1974).

    Article  Google Scholar 

  20. J. W. Mclver, The Structure of Transition States: Are They Symmetric?, Acc. Chem. Res. 7: 72 (1974).

    Article  Google Scholar 

  21. J. Pancik, Calculation of the Least Energy Path on the Energy Hypersurface, Coll. Czech. Chem. Comm. 40: 1112 (1975).

    Article  Google Scholar 

  22. H. Pop**er, On the Calculation of Transition States, Chem. Phys. Lett. 35: 550 (1975).

    Article  ADS  Google Scholar 

  23. T. A. Halgren and W. N. Lipscomb, The Synchronous Transit Method for Determining Reaction Pathways and Locating Molecular Transition States, Chem. Phys. Lett. 49: 225 (1977).

    Article  ADS  Google Scholar 

  24. P. G. Mezey, M. R. Peterson and I. G. Csizmadia, Transition state determination by the X-method, Can. J. Chem. 55: 2941 (1977).

    Article  Google Scholar 

  25. K. Müller and L. D. Brown, Location of Saddle Points and Minimum Energy Paths by a Constrained Simplex Optimization Procedure, Theor. Chim. Acta (Berl.). 53: 75 (1979).

    Article  Google Scholar 

  26. W. H. Miller, N. C. Handy and J. E. Adams, Reaction path Hamiltonian for polyatomic molecules, J. Chem. Phys. 72: 99 (1980).

    Article  ADS  Google Scholar 

  27. C. J. Cerjan and W. H. Miller, On finding transition states, J. Chem. Phys. 75: 2800 (1981).

    Article  ADS  Google Scholar 

  28. D. O’Neal, H. Taylor and J. Simons, Potential Surface Walking and Reaction Paths for C2vBe + H2<- BeH2-> Be + 2H (1A1), J. Phys. Chem. 88: 1510 (1984).

    Article  Google Scholar 

  29. J. Simons, P. Jørgenson, H. Taylor and J. Ozment, Walking on Potential Energy Surfaces, J. Phys. Chem. 87: 2745 (1983).

    Article  Google Scholar 

  30. J. Baker, An Algorithm for the Location of Transition States, J. Comp. Chem. 7: 385 (1986).

    Article  Google Scholar 

  31. R. S. Berry, H. L. Davis and T. L. Beck, Finding saddles on multidimensional potential surfaces, Chem. Phys. Lett. 147: 13 (1988).

    Article  ADS  Google Scholar 

  32. R. S. Berry, How We and Molecules Explore Molecular Landscapes, in: “Mode Selective Chemistry,” J. Jortner, A. Pullman and B. Pullman, ed., Kluwer Academic Publishers, Amsterdam (1991).

    Google Scholar 

  33. D. J. Wales, Transition States for Ar55, Chem. Phys. Lett. 166: 419 (1990).

    Article  ADS  Google Scholar 

  34. D. J. Wales, Locating Stationary Points for Clusters in Cartesian Coordinates, J. Chem. Soc. Faraday Trans. 89: 1305 (1993).

    Article  Google Scholar 

  35. J. Rose and R. S. Berry, Towards elucidating the interplay of structure and dynamics in clusters: Small KC1 clusters as models, J. Chem. Phys. 96: 517 (1992).

    Article  ADS  Google Scholar 

  36. R. S. Berry, “Atomic Clusters: Laboratories for Studying Chaos and Ergodicity,” in Proc. Adriatico Research Conference “Mesoscopic Systems and Chaos, a Novel Approach,”, Trieste, 1993, H. Cerdiera and G. Casati, ed., World Scientific, Singapore (1994).

    Google Scholar 

  37. J. Rose and R. S. Berry, (KC1)32 and the possibilities for glassy clusters, J. Chem. Phys. 98: 3262 (1993).

    Article  ADS  Google Scholar 

  38. J. P. Rose and R. S. Berry, Freezing, Melting, Nonwetting and Coexistence in (KC1)32, J. Chem. Phys. 98: 3246 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Berry, R.S. (1994). Exploring Potential Surface Landscapes and How they Govern Dynamics. In: Christophorou, L.G., Illenberger, E., Schmidt, W.F. (eds) Linking the Gaseous and Condensed Phases of Matter. NATO ASI Series, vol 326. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2540-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2540-0_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6083-4

  • Online ISBN: 978-1-4615-2540-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation