Transient Solutions of Markov Processes by Krylov Subspaces

  • Conference paper
Computations with Markov Chains
  • 524 Accesses

Abstract

In this note we exploit the knowledge embodied in infinitesimal generators of Markov processes to compute efficiently and economically the transient solution of continuous time Markov processes. We consider the Krylov subspace approximation method which has been analysed by Gallopoulos and Saad for solving partial differential equations and linear ordinary differential equations [7, 17]. We place special emphasis on error bounds and stepsize control. We illustrate the usefulness of the approach by providing some application examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. Abdallah and R. Marie. The uniformized power method for transient solutions of Markov processes. Computers Ops Res., 20(5):515–526, 1993.

    Article  MATH  Google Scholar 

  2. S. Agmon, A. Douglas, and L. Nirenberg. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I. Comm. Pure Appl. Math., 12:623–727, 1959.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. Academic Press, New York, 1979.

    MATH  Google Scholar 

  4. C. A. Clarotti. The Markov approach to calculating system reliability: Computational problems. In A. Serra and R. E. Barlow, editors, International School of Physics «Enrico Fermi», Varenna, Italy, pages 54–66, Amsterdam, 1984. North-Holland Physics Publishing.

    Google Scholar 

  5. W. J. Cody, G. Meinardus, and R. S. Varga. Chebyshev rational approximation to exp(—x) in [0, +∞) and applications to heat conduction problems. J. Approx. Theory,2:50–65, 1969.

    Article  MathSciNet  MATH  Google Scholar 

  6. I. S. Duff and J. A. Scott. Computing selected eigenvalues of sparse un-symmetric matrices using subspace iteration. ACM Trans. Math. Softw., 19(2):137–159, June 1993.

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Gallopoulos and Y. Saad. Efficient solution of parabolic equations by Krylov approximation methods. SIAM J. Sci. Stat. Comput.,13(5):1236–1264, September 1992.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University Press, Baltimore, second edition, 1989.

    MATH  Google Scholar 

  9. K. Gustafsson. Control theoretic techniques for stepsize selection in explicit Runge-Kutta methods. ACM Trans. Math. Softw., 17(4):533–554, December 1991.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Malhotra and K. S. Trivedi. Higher-order methods for transient analysis of stiff Markov chains. Submitted, June 1991.

    Google Scholar 

  11. C. B. Moler and C. F. Van Loan. Nineteen dubious ways to compute the exponential of a matrix. SIAM Review.,20(4):801–836, October 1978.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. F. Neuts. Matrix Geometric Solutions in Stochastic Models: An Algorithmic Approach. The Johns Hopkins Univeristy Press, Baltimore, 1981.

    MATH  Google Scholar 

  13. B. N. Parlett. A recurrence among the elements of functions of triangular matrices. Linear Algebra Appl., 14:117–121, May 1976.

    Article  MathSciNet  MATH  Google Scholar 

  14. B. N. Parlett and K. C. Ng. Development of an accurate algorithm for exp(bτ). Technical Report PAM-294, Center for Pure and Applied Mathematics, University of California, Berkeley, August 1985.

    Google Scholar 

  15. B. Philippe and M. Sadkane. Improving the reliability of a deflated non hermitian generalized cigenvalue problem. In Fifth SIAM Conference on Applied Linear Algebra, June 1994.

    Google Scholar 

  16. A. Riebman and K. Trivedi. Transient analysis of cumulative measures of Markov model behavior. Commu. Statist.-Stochastic Models, 5(4):683–710, 1989.

    Article  Google Scholar 

  17. Y. Saad. Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal., 29(1):208–227, February 1992.

    Article  MathSciNet  Google Scholar 

  18. Y. Saad. Numerical Methods for Large Eigenvalue Problems. John Wiley & Sons, Manchester Univ. Press, 1992.

    MATH  Google Scholar 

  19. E. Seneta. Non-negative Matrices and Markov Chains. Springer-Verlag, New York, second edition, 1981.

    MATH  Google Scholar 

  20. R. B. Sidje. Parallel Algorithms for Large Sparse Matrix Exponentials: application to numerical transient analysis of Markov processes. PhD thesis, University of Rennes 1, July 1994.

    Google Scholar 

  21. C. F. Van Loan. The sensitivity of the matrix exponential. SIAM J. Numer. Anal., 14(6):971–981, December 1977.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. S. Varga. Nonnegatively posed problems and completely monotonic functions. Linear Algebra and Appl., 1:329–347, 1968.

    Article  MathSciNet  MATH  Google Scholar 

  23. R. C. Ward. Numerical computation of the matrix exponential with accuracy estimate. SIAM J. Numer. Anal., 14(4):600–610, September 1977.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this paper

Cite this paper

Philippe, B., Sidje, R.B. (1995). Transient Solutions of Markov Processes by Krylov Subspaces. In: Stewart, W.J. (eds) Computations with Markov Chains. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2241-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2241-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5943-2

  • Online ISBN: 978-1-4615-2241-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation