Movement Inhibition and Next Sensory State Prediction in the Basal Ganglia

  • Chapter
The Basal Ganglia VI

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 54))

Abstract

The basal ganglia (BG) have received increasing attention over the last decade from both experimentalists and computational modelers in an effort to more fully understand their role in motor control. Their suggested role has ranged from motor preparation and facilitation2,18 to initiation21 and program selection7,22 to motor inhibitions51. All these models have the BG more or less directly involved in the control of movements, either by selecting the motor command to be executed, or through the facilitation of a motor command presumably selected by cortical mechanisms. However, researchers have found that patients with diseases of the BG, particularly Huntington’s disease and Parkinson’s disease (PD), do not have significant motor control difficulties when visual input is available12,16,53 but do have problems with specific forms of internally driven sequences of movements20 as well as certain forms of motor memory tasks47,52. This implies that the basal ganglia are less involved in the selection of a single, sensorially shaped motor command, but may instead be involved in assisting cortical planning centers in some fashion as well as provide sequencing information for cross-modal movements, e.g., simultaneous arm reach, hand grasp, head movement and eye movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Agostino, A. Berardelli, A. Formica, N. Accornero, and M. Manfredi, Sequential arm movements in patients with Parkinson’s disease, Huntington’s disease and dystonia, Brain. 115:1481–1495 (1992).

    Article  PubMed  Google Scholar 

  2. G.E. Alexander and M.D. Crutcher, Preparation for movement: Neural representations of intended direction in three motor areas of the monkey, J Neurophysiol. 64:133–150 (1990).

    PubMed  CAS  Google Scholar 

  3. G.E. Alexander, M.D. Crutcher, and M.R. DeLong, Basal ganglia-thalamocortical circuits: Parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions, in Progress in Brain Research, H.B.M. Uylings, C.GV. Eden, J.P.C.D. Bruin, M.A. Corner, and M.G.P. Feenstra, eds., Elsevier Science Publishers B. V., New York (1990).

    Google Scholar 

  4. R.A. Andersen, C. Asanuma, and W.M. Cowan, Callosal and prefrontal associational projecting cell populations in area 7A of the macaque monkey: A study using retrogradely transported fluorescent dyes, J Comp Neurol. 232:443–455 (1985).

    Article  PubMed  CAS  Google Scholar 

  5. P. Barone and J.-P. Joseph, Prefrontal cortex and spatial sequencing in macaque monkey, Exp Brain Res. 78:447–464 (1989).

    Article  PubMed  CAS  Google Scholar 

  6. H. Bergman, T. Wichmann, B. Karmon, and M.R. DeLong, The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism, J Neurophysiol. 72:507–520 (1994).

    PubMed  CAS  Google Scholar 

  7. G.S. Bems and T.J. Sejnowski, A model of basal ganglia function unifying reinforcement learning and action selection, Joint Symposium on Neural Computation: 129–148 (1995).

    Google Scholar 

  8. A. Bischoff, Modeling the Basal Ganglia in the Control of Arm Movements. Ph.D. Thesis, University of Southern California (1998).

    Google Scholar 

  9. A. Bischoff-Grethe and M.A. Arbib, Modeling the basal ganglia in a conditional elbow flexion-extension task, (in preparation).

    Google Scholar 

  10. A. Bischoff-Grethe and M.A. Arbib, Sequential movements: A computational model of the roles of the basal ganglia and the supplementary motor area, (in preparation).

    Google Scholar 

  11. A. Bischoff-Grethe, M.A. Arbib, and C.J. Winstein, A computational model of the basal ganglia and its performance in a reciprocal aiming task, (submitted).

    Google Scholar 

  12. A.M. Bronstein and C. Kennard, Predictive ocular motor control in Parkinson’s disease, Brain. 108:925940 (1985).

    Google Scholar 

  13. P. Brotchie, R. Iansek, and M. K. Home, Motor function of the monkey globus pallidus. 1. Neuronal discharge and parameters of movement, Brain. 114:1667–1683 (1991).

    Article  PubMed  Google Scholar 

  14. P. Brotchie, R. Iansek, and M.K. Horne, Motor function of the monkey globus pallidus. 2. Cognitive aspects of movement and phasic neuronal activity, Brain. 114:1685–1702 (1991).

    Article  PubMed  Google Scholar 

  15. J.A. Buford, M. Inase, and M.E. Anderson, Contrasting locations of pallidal-receiving neurons and microexcitable zones in primate thalamus, J Neurophysiol. 75:1105–1116 (1996).

    PubMed  CAS  Google Scholar 

  16. T.J. Crawford, L. Henderson, and C. Kennard, Abnormalities of nonvisually-guided eye movements in Parkinson’s disease, Brain. 112:1573–1586 (1989).

    Article  PubMed  Google Scholar 

  17. M.G. Crowley, Modeling Saccadic Motor Control: Normal Function, Sensory Remap**, and Basal Ganglia Dysfunction. Ph.D. Thesis, University of Southern California (1997).

    Google Scholar 

  18. M.D. Crutcher and G.E. Alexander, Movement-related neuronal activity coding direction or muscle pattern in three motor areas of the monkey, J Neurophysiol. 64:151–163 (1990).

    PubMed  CAS  Google Scholar 

  19. M.D. Crutcher and M.R. DeLong, Single cell studies of the primate putamen. II. Relations to direction of movement and pattern of muscular activity, Exp Brain Res. 53:244–258 (1984).

    Article  PubMed  CAS  Google Scholar 

  20. A. Curra, A. Berardelli, R. Agostino, N. Modugno, C.C. Puorger, N. Accornero, and M. Manfredi, Performance of sequential arm movements with and without advance knowledge of motor pathways in Parkinson’s disease, Mov Disord. 12:646–654 (1997).

    Article  PubMed  CAS  Google Scholar 

  21. P.F. Dominey and M.A. Arbib, A cortico-subcortical model for generation of spatially accurate sequential saccades, Cereb Cortex. 2:153–175 (1992).

    Article  PubMed  CAS  Google Scholar 

  22. P.F. Dominey, M.A. Arbib, and J.-P. Joseph, A model of corticostriatal plasticity for learning oculomotor associations and sequences, J Cogn Neurosci. 7:311–336 (1995).

    Article  Google Scholar 

  23. J.-R. Duhamel, C.L. Colby, and M.E. Goldberg, The updating of the representation of visual space in parietal cortex by intended eye movements, Science. 255:90–92 (1992).

    Article  PubMed  CAS  Google Scholar 

  24. A.P. Georgopoulos, M.R. DeLong, and M.D. Crutcher, Relations between parameters of step-tracking movements and single cell discharge in the globus pallidus and subthalamic nucleus of the behaving monkey, J Neurosci. 3:1586–1598 (1983).

    PubMed  CAS  Google Scholar 

  25. P.S. Goldman-Rakic, Circuitry of primate prefrontal cortex and regulation of behavior by representational memory, in Handbook of Physiology, The Nervous System, Higher Functions of the Brain, American Physiological Society, Bethesda, MD (1987).

    Google Scholar 

  26. S.T. Grafton, C. Waters, J. Sutton, M.F. Lew, and W. Couldwell, Pallidotomy increases activity of motor association cortex in Parkinson’s disease: A positron emission tomographic study, Ann Neurol. 37:776–783 (1995).

    Article  PubMed  CAS  Google Scholar 

  27. U. Halsband, Y. Matsuzaka, and J. Tanji, Neuronal activity in the primate supplementary, pre-supplementary and premotor cortex during externally and internally instructed sequential movements, Neurosci Res. 20:149–155 (1994).

    Article  PubMed  CAS  Google Scholar 

  28. O. Hikosaka and R. Wurtz, Visual and oculomotor functions of monkey substantia nigra pars reticulata.I. Relation of visual and auditory responses to saccades, J Neurophysiol. 49:1230–1253 (1983).

    PubMed  CAS  Google Scholar 

  29. O. Hikosaka and R. Wurtz, Visual and oculomotor functions of monkey substantia nigra pars reticulata.II. Visual responses related to fixation of gaze, J Neurophysiol. 49:1254–1267 (1983).

    PubMed  CAS  Google Scholar 

  30. O. Hikosaka and R.H. Wurtz, Visual and oculomotor functions of monkey substantia nigra pars reticulata.III. Memory continent visual and saccade responses, J Neurophysiol. 49:1268–1284 (1983).

    PubMed  CAS  Google Scholar 

  31. O. Hikosaka and R.H. Wurtz, Modification of saccadic eye movements by GABA-related substances. I. Effect of muscimol and bicuculline in monkey superior colliculus, J Neurophysiol. 53:266–291 (1985).

    PubMed  CAS  Google Scholar 

  32. O. Hikosaka and R.H. Wurtz, Modification of saccadic eye movements by GABA-related substances. II. Effects of muscimol in monkey substantia nigra pars reticulata, J Neurophysiol. 53:292–308 (1985).

    PubMed  CAS  Google Scholar 

  33. B. Hoff and M.A. Arbib, A model of the effects of speed, accuracy, and perturbation on visually guided reaching, in Control of Arm Movement in Space: Neurophysiological and Computational Approaches, R. Caminiti, P.B. Johnson, and Y. Burnod, eds., Springer-Verlag, Berlin (1992).

    Google Scholar 

  34. D. Jaeger, S. Gilman, and J.W. Aldridge, Primate basal ganglia in a precued reaching task: Preparation for movement, Exp Brain Res. 95:51–64 (1993).

    Article  PubMed  CAS  Google Scholar 

  35. I.H. Jenkins, D.J. Brooks, P.D. Nixon, R.S.J. Frackowiak, and R.E. Passingham, Motorsequencelearning: A study with positron emission tomography, J Neurosci. 14:3775–3790 (1994).

    PubMed  CAS  Google Scholar 

  36. M. Kimura, Behaviorally contingent property of movement-related activity of the primate putamen,J Neurophysiol. 63:1277–1296 (1990).

    PubMed  CAS  Google Scholar 

  37. M. Kimura, M. Kato, H. Shimazaki, K. Watanabe, and N. Matsumoto, Neural information transferred from the putamen to the globus pallidus during learned movement in the monkey, J Neurophysiol. 76:3771–3786 (1996).

    PubMed  CAS  Google Scholar 

  38. A.G Lasker, D.S. Zee, T.C. Hain, S.E. Folstein, and H.S. Singer, Saccades in Huntington’s disease: Initiation defects and distractibility, Neurol. 37:364–270 (1987).

    Article  CAS  Google Scholar 

  39. C.J. Lueck, S. Tanyeri, T.J. Crawford, L. Henderson, and C. Kennard, Antisaccades and remembered saccades in Parkinson’s disease, J Neurol. 53:284–288 (1990).

    CAS  Google Scholar 

  40. G. Luppino, M. Matelli, R. Camarda, and G. Rizzolatti, Corticocortical connections of area F3 (SMA- proper) and area F6 (pre-SMA) in the macaque monkey, J Comp Neurol. 338:114–140 (1993).

    Article  PubMed  CAS  Google Scholar 

  41. J.C. Lynch, A.M. Graybiel, and L.J. Lobeck, The differential projection of two cytoarchitectonic subregions of the inferior parietal lobule of macaque upon the deep layers of the superior colliculus, J Comp Neurol. 235:241–254 (1985).

    Article  PubMed  CAS  Google Scholar 

  42. M. Matsumura, J. Kojima, T.W. Gardiner, and O. Hikosaka, Visual and oculomotor functions of monkey subthalamic nucleus, J Neurophysiol. 67:1615–1632 (1992).

    PubMed  CAS  Google Scholar 

  43. J.W. Mink and W.T. Thach, Basal ganglia motor control. II. Late pallidal timing relative to movementonset and inconsistent pallidal coding of movement parameters, J Neurophysiol. 65:301–329 (1991).

    PubMed  CAS  Google Scholar 

  44. S.J. Mitchell, R.T. Richardson, F.H. Baker, and M.R. DeLong, The primate globus pallidus: Neuronalactivity in direction of movement, Exp Brain Res. 68:491–505 (1987).

    PubMed  CAS  Google Scholar 

  45. A. Nambu, S. Yoshida, and K. **nai, Discharge patterns of pallidal neurons with input from various cortical areas during movement in the monkey, Brain Res. 519:183–191 (1990).

    Article  PubMed  CAS  Google Scholar 

  46. A. Parent and L.-N. Hazrati, Anatomical aspects of information-processing in primate basal ganglia, TINS. 16:111–116 (1993).

    PubMed  CAS  Google Scholar 

  47. A. Pascual-Leone, J. Grafman, K. Clark, M. Stewart, S. Massaquoi, J.-S. Lou, and M. Hallett, Procedurallearning in Parkinson’s disease and cerebellar degeneration, Ann Neurol. 34:594–602 (1993).

    Article  PubMed  CAS  Google Scholar 

  48. R.E. Passingham, D.E. Thaler, and Y. Chen, Supplementary motor cortex and self-initiated movement,in Neural Programming, M. Ito, ed., Karger, Basel (1989).

    Google Scholar 

  49. J. Tanji and H. Mushiake, Comparison of neuronal activity in the supplementary motor area and primary motor cortex, Cogn Brain Res. 3:143–150 (1996).

    Article  CAS  Google Scholar 

  50. J. Tanji and K. Shima, Role for supplementary motor area cells in planning several movements ahead, Nature. 371:413–416 (1994).

    Article  PubMed  CAS  Google Scholar 

  51. W.T. Thach, J.W. Mink, H.P. Goodkin, and J.G. Keating, Combining versus gating motor programs: Differential roles for cerebellum and basal ganglia?, in Role of the Cerebellum and Basal Ganglia in Voluntary Movement, N. Mano, I. Hamada, and M.R. DeLong, eds., Elsevier Science Publishers, Amsterdam (1993).

    Google Scholar 

  52. V. Thomas-Ollivier, J.M. Reymann, S. Le Moal, S. Schuck, A. Lieury, and H. Allain, Procedural memory in recent-onset Parkinson’s disease, Dement Geriatr Cogn Disord. 10:172–180 (1999).

    Article  Google Scholar 

  53. J.R. Tian, D.S. Zee, A.G. Lasker, and S.E. Folstein, Saccades in Huntington’s disease: Predictive tracking and interaction between release of fixation and initiation of saccades, Neurol. 41:875–881 (1991).

    Article  CAS  Google Scholar 

  54. R.S. Turner and M.E. Anderson, Pallidal discharge related to the kinematics of reaching movements in two dimensions, J Neurophysiol. 77:1051–1074 (1997).

    PubMed  CAS  Google Scholar 

  55. J.L. Vitek, J. Ashe, M.R. DeLong, and G.E. Alexander, Physiological properties and somatotopicorganization of the primate motor thalamus, J Neurophysiol. 71:1498–1513 (1994).

    PubMed  CAS  Google Scholar 

  56. T. Wichmann, H. Bergman, and MR. DeLong, The primate subthalamic nucleus. I. Functional propertiesin intact animals, J Neurophysiol. 72:494–506 (1994).

    PubMed  CAS  Google Scholar 

  57. T. Wichmann, H. Bergman, and M.R. DeLong, The-primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism, J Neurophysiol. 72:521–530 (1994).

    PubMed  CAS  Google Scholar 

  58. S. Yoshida, A. Nambu, and K. **nai, The distribution of the globus pallidus neurons with input from various cortical areas in the monkeys, Brain Res. 611:170–174 (1993).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bischoff-Grethe, A., Crowley, M.G., Arbib, M.A. (2002). Movement Inhibition and Next Sensory State Prediction in the Basal Ganglia. In: Graybiel, A.M., Delong, M.R., Kitai, S.T. (eds) The Basal Ganglia VI. Advances in Behavioral Biology, vol 54. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0179-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0179-4_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4955-6

  • Online ISBN: 978-1-4615-0179-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation