Inherited Susceptibility to CLL

  • Chapter
  • First Online:
Advances in Chronic Lymphocytic Leukemia

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 792))

Abstract

Chronic lymphocytic leukaemia (CLL) is the most common lymphoid malignancy in Western countries, accounting for around a quarter of all leukaemias. Despite a strong familial basis to CLL, with risks in first-degree relatives of CLL cases being increased around sevenfold, the inherited genetic basis of CLL is currently largely unknown. The failure of genetic studies of CLL families to provide support for a major disease-causing locus has suggested a model of susceptibility based on the co-inheritance of multiple low-risk variants, some of which will be common. Recent genome-wide association studies of CLL have vindicated this model of inherited susceptibility to CLL, identifying common variants at multiple independent loci influencing risk. Here we review the evidence for inherited genetic predisposition to CLL and what the currently identified risk loci are telling us about the biology of CLL development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ries LA, Wingo PA, Miller DS, Howe HL, Weir HK, Rosenberg HM, et al. The annual report to the nation on the status of cancer, 1973-1997, with a special section on colorectal cancer. Cancer. 2000;88:2398–424.

    Article  PubMed  CAS  Google Scholar 

  2. Horner MJ, Ries LAG, Krapcho M, Neyman N, Aminou R, Howlader N, et al. (eds). SEER Cancer Statistics Review, 1975-2006, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2006/, based on November 2008 SEER data submission, posted to the SEER web site, 2009.

  3. Gale RP, Cozen W, Goodman MT, Wang FF, Bernstein L. Decreased chronic lymphocytic leukemia incidence in Asians in Los Angeles County. Leuk Res. 2000;24:665–9.

    Article  PubMed  CAS  Google Scholar 

  4. Haenszel W, Kurihara M. Studies of Japanese migrants. I. Mortality from cancer and other diseases among Japanese in the United States. J Natl Cancer Inst. 1968;40:43–68.

    PubMed  CAS  Google Scholar 

  5. Cobb RM, Oestreich KJ, Osipovich OA, Oltz EM. Accessibility control of V(D)J recombination. Adv Immunol. 2006;91:45–109.

    Article  PubMed  CAS  Google Scholar 

  6. Chung JB, Silverman M, Monroe JG. Transitional B cells: step by step towards immune competence. Trends Immunol. 2003;24:343–9.

    Article  PubMed  CAS  Google Scholar 

  7. McHeyzer-Williams LJ, Driver DJ, McHeyzer-Williams MG. Germinal center reaction. Curr Opin Hematol. 2001;8:52–9.

    Article  PubMed  CAS  Google Scholar 

  8. Shapiro-Shelef M, Calame K. Regulation of plasma-cell development. Nat Rev Immunol. 2005;5:230–42.

    Article  PubMed  CAS  Google Scholar 

  9. Fais F, Ghiotto F, Hashimoto S, Sellars B, Valetto A, Allen SL, et al. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest. 1998;102:1515–25.

    Article  PubMed  CAS  Google Scholar 

  10. Schroeder Jr HW, Dighiero G. The pathogenesis of chronic lymphocytic leukemia: analysis of the antibody repertoire. Immunol Today. 1994;15:288–94.

    Article  PubMed  CAS  Google Scholar 

  11. Damle RN, Ghiotto F, Valetto A, Albesiano E, Fais F, Yan XJ, et al. B-cell chronic lymphocytic leukemia cells express a surface membrane phenotype of activated, antigen-experienced B lymphocytes. Blood. 2002;99:4087–93.

    Article  PubMed  CAS  Google Scholar 

  12. Stevenson FK, Caligaris-Cappio F. Chronic lymphocytic leukemia: revelations from the B-cell receptor. Blood. 2004;103:4389–95.

    Article  PubMed  CAS  Google Scholar 

  13. Klein U, Tu Y, Stolovitzky GA, Mattioli M, Cattoretti G, Husson H, et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med. 2001;194:1625–38.

    Article  PubMed  CAS  Google Scholar 

  14. Murray F, Darzentas N, Hadzidimitriou A, Tobin G, Boudjogra M, Scielzo C, et al. Stereotyped patterns of somatic hypermutation in subsets of patients with chronic lymphocytic leukemia: implications for the role of antigen selection in leukemogenesis. Blood. 2008;111:1524–33.

    Article  PubMed  CAS  Google Scholar 

  15. Stamatopoulos K, Belessi C, Moreno C, Boudjograh M, Guida G, Smilevska T, et al. Over 20% of patients with chronic lymphocytic leukemia carry stereotyped receptors: pathogenetic implications and clinical correlations. Blood. 2007;109:259–70.

    Article  PubMed  CAS  Google Scholar 

  16. Yuille MR, Matutes E, Marossy A, Hilditch B, Catovsky D, Houlston RS. Familial chronic lymphocytic leukaemia: a survey and review of published studies. Br J Haematol. 2000;109:794–9.

    Article  PubMed  CAS  Google Scholar 

  17. Jonsson V, Houlston RS, Catovsky D, Yuille MR, Hilden J, Olsen JH, et al. CLL family ‘Pedigree 14’ revisited: 1947-2004. Leukemia. 2005;19:1025–8.

    Article  PubMed  CAS  Google Scholar 

  18. Linet MS, Van Natta ML, Brookmeyer R, Khoury MJ, McCaffrey LD, Humphrey RL, et al. Familial cancer history and chronic lymphocytic leukemia. A case-control study. Am J Epidemiol. 1989;130:655–64.

    PubMed  CAS  Google Scholar 

  19. Goldin LR, Pfeiffer RM, Li X, Hemminki K. Familial risk of lymphoproliferative tumors in families of patients with chronic lymphocytic leukemia: results from the Swedish Family-Cancer Database. Blood. 2004;104:1850–4.

    Article  PubMed  CAS  Google Scholar 

  20. Gunz FW, Gunz JP, Veale AM, Chapman CJ, Houston IB. Familial leukaemia: a study of 909 families. Scand J Haematol. 1975;15:117–31.

    Article  PubMed  CAS  Google Scholar 

  21. Giles GG, Lickiss JN, Baikie MJ, Lowenthal RM, Panton J. Myeloproliferative and lymphoproliferative disorders in Tasmania, 1972-80: occupational and familial aspects. J Natl Cancer Inst. 1984;72:1233–40.

    PubMed  CAS  Google Scholar 

  22. Goldgar DE, Easton DF, Cannon-Albright LA, Skolnick MH. Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst. 1994;86:1600–8.

    Article  PubMed  CAS  Google Scholar 

  23. Cartwright RA, Bernard SM, Bird CC, Darwin CM, O’Brien C, Richards ID, et al. Chronic lymphocytic leukaemia: case control epidemiological study in Yorkshire. Br J Cancer. 1987;56:79–82.

    Article  PubMed  CAS  Google Scholar 

  24. Pottern LM, Linet M, Blair A, Dick F, Burmeister LF, Gibson R, et al. Familial cancers associated with subtypes of leukemia and non-Hodgkin’s lymphoma. Leuk Res. 1991;15:305–14.

    Article  PubMed  CAS  Google Scholar 

  25. Goldin LR, Bjorkholm M, Kristinsson SY, Turesson I, Landgren O. Elevated risk of chronic lymphocytic leukemia and other indolent non-Hodgkin’s lymphomas among relatives of patients with chronic lymphocytic leukemia. Haematologica. 2009;94:647–53.

    Article  PubMed  Google Scholar 

  26. Ishibe N, Sgambati MT, Fontaine L, Goldin LR, Jain N, Weissman N, et al. Clinical characteristics of familial B-CLL in the National Cancer Institute Familial Registry. Leuk Lymphoma. 2001;42:99–108.

    Article  PubMed  CAS  Google Scholar 

  27. Crowther-Swanepoel D, Wild R, Sellick G, Dyer MJ, Mauro FR, Cuthbert RJ, et al. Insight into the pathogenesis of chronic lymphocytic leukemia (CLL) through analysis of IgVH gene usage and mutation status in familial CLL. Blood. 2008;111:5691–3.

    Article  PubMed  CAS  Google Scholar 

  28. Wiernik PH, Ashwin M, Hu XP, Paietta E, Brown K. Anticipation in familial chronic lymphocytic leukaemia. Br J Haematol. 2001;113:407–14.

    Article  PubMed  CAS  Google Scholar 

  29. Horwitz M, Goode EL, Jarvik GP. Anticipation in familial leukemia. Am J Hum Genet. 1996;59:990–8.

    PubMed  CAS  Google Scholar 

  30. Yuille MR, Houlston RS, Catovsky D. Anticipation in familial chronic lymphocytic leukaemia. Leukemia. 1998;12:1696–8.

    Article  PubMed  CAS  Google Scholar 

  31. Daugherty SE, Pfeiffer RM, Mellemkjaer L, Hemminki K, Goldin LR. No evidence for anticipation in lymphoproliferative tumors in population-based samples. Cancer Epidemiol Biomarkers Prev. 2005;14:1245–50.

    Article  PubMed  Google Scholar 

  32. Mauro FR, Giammartini E, Gentile M, Sperduti I, Valle V, Pizzuti A, et al. Clinical features and outcome of familial chronic lymphocytic leukemia. Haematologica. 2006;91:1117–20.

    PubMed  Google Scholar 

  33. Brezinschek HP, Brezinschek RI, Lipsky PE. Analysis of the heavy chain repertoire of human peripheral B cells using single-cell polymerase chain reaction. J Immunol. 1995;155:190–202.

    PubMed  CAS  Google Scholar 

  34. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999;94:1848–54.

    PubMed  CAS  Google Scholar 

  35. Mockridge CI, Rahman A, Buchan S, Hamblin T, Isenberg DA, Stevenson FK, et al. Common patterns of B cell perturbation and expanded V4-34 immunoglobulin gene usage in autoimmunity and infection. Autoimmunity. 2004;37:9–15.

    Article  PubMed  Google Scholar 

  36. Kostareli E, Hadzidimitriou A, Stavroyianni N, Darzentas N, Athanasiadou A, Gounari M, et al. Molecular evidence for EBV and CMV persistence in a subset of patients with chronic lymphocytic leukemia expressing stereotyped IGHV4-34 B-cell receptors. Leukemia. 2009;23(5):919–24.

    Article  PubMed  CAS  Google Scholar 

  37. Goldin LR, Ishibe N, Sgambati M, Marti GE, Fontaine L, Lee MP, et al. A genome scan of 18 families with chronic lymphocytic leukaemia. Br J Haematol. 2003;121:866–73.

    Article  PubMed  Google Scholar 

  38. Sellick GS, Goldin LR, Wild RW, Slager SL, Ressenti L, Strom SS, et al. A high-density SNP genome-wide linkage search of 206 families identifies susceptibility loci for chronic lymphocytic leukemia. Blood. 2007;110:3326–33.

    Article  PubMed  CAS  Google Scholar 

  39. Sellick GS, Webb EL, Allinson R, Matutes E, Dyer MJ, Jonsson V, et al. A high-density SNP genomewide linkage scan for chronic lymphocytic leukemia-susceptibility loci. Am J Hum Genet. 2005;77:420–9.

    Article  PubMed  CAS  Google Scholar 

  40. Fuller SJ, Papaemmanuil E, McKinnon L, Webb E, Sellick GS, Dao-Ung LP, et al. Analysis of a large multi-generational family provides insight into the genetics of chronic lymphocytic leukemia. Br J Haematol. 2008;142(2):238–45.

    Article  PubMed  Google Scholar 

  41. Raval A, Tanner SM, Byrd JC, Angerman EB, Perko JD, Chen SS, et al. Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell. 2007;129:879–90.

    Article  PubMed  CAS  Google Scholar 

  42. Houlston RS, Peto J. The future of association studies of common cancers. Hum Genet. 2003;112:434–5.

    PubMed  Google Scholar 

  43. Di Bernardo MC, Crowther-Swanepoel D, Broderick P, Webb E, Sellick G, Wild R, et al. A genome-wide association study identifies six susceptibility loci for chronic lymphocytic leukemia. Nat Genet. 2008;40:1204–10.

    Article  PubMed  Google Scholar 

  44. Crowther-Swanepoel D, Broderick P, Di Bernardo MC, Dobbins SE, Torres M, Mansouri M, et al. Common variants at 2q37.3, 8q24.21, 15q21.3 and 16q24.1 influence chronic lymphocytic leukemia risk. Nat Genet. 2010;42:132–6.

    Article  PubMed  CAS  Google Scholar 

  45. Slager SL, Skibola CF, Di Bernardo MC, Conde L, Broderick P, McDonnell SK, et al. Common variation at 6p21.31 (BAK1) influences the risk of chronic lymphocytic leukemia. Blood. 2012;120:843–6.

    Article  PubMed  CAS  Google Scholar 

  46. Crowther-Swanepoel D, Mansouri M, Enjuanes A, Vega A, Smedby KE, Ruiz-Ponte C, et al. Verification that common variation at 2q37.1, 6p25.3, 11q24.1, 15q23, and 19q13.32 influences chronic lymphocytic leukaemia risk. Br J Haematol. 2010;150(4):473–9.

    PubMed  Google Scholar 

  47. Slager SL, Goldin LR, Strom SS, Lanasa MC, Spector LG, Rassenti L, et al. Genetic susceptibility variants for chronic lymphocytic leukemia. Cancer Epidemiol Biomarkers Prev. 2010;19:1098–102.

    Article  PubMed  CAS  Google Scholar 

  48. Crowther-Swanepoel D, Di Bernardo MC, Jamroziak K, Karabon L, Frydecka I, Deaglio S, et al. Common genetic variation at 15q25.2 impacts on chronic lymphocytic leukaemia risk. Br J Haematol. 2011;154:229–33.

    Article  PubMed  Google Scholar 

  49. Rawstron AC, Green MJ, Kuzmicki A, Kennedy B, Fenton JA, Evans PA, et al. Monoclonal B lymphocytes with the characteristics of “indolent” chronic lymphocytic leukemia are present in 3.5% of adults with normal blood counts. Blood. 2002;100:635–9.

    Article  PubMed  CAS  Google Scholar 

  50. Rawstron AC, Bennett FL, O’Connor SJ, Kwok M, Fenton JA, Plummer M, et al. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N Engl J Med. 2008;359:575–83.

    Article  PubMed  CAS  Google Scholar 

  51. Marti GE, Carter P, Abbasi F, Washington GC, Jain N, Zenger VE, et al. B-cell monoclonal lymphocytosis and B-cell abnormalities in the setting of familial B-cell chronic lymphocytic leukemia. Cytometry B Clin Cytom. 2003;52:1–12.

    Article  PubMed  Google Scholar 

  52. Rawstron AC, Yuille MR, Fuller J, Cullen M, Kennedy B, Richards SJ, et al. Inherited predisposition to CLL is detectable as subclinical monoclonal B-lymphocyte expansion. Blood. 2002;100:2289–90.

    Article  PubMed  CAS  Google Scholar 

  53. Busslinger M. Transcriptional control of early B cell development. Annu Rev Immunol. 2004;22:55–79.

    Article  PubMed  CAS  Google Scholar 

  54. Klein U, Casola S, Cattoretti G, Shen Q, Lia M, Mo T, et al. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat Immunol. 2006;7:773–82.

    Article  PubMed  CAS  Google Scholar 

  55. Xu D, Zhao L, Del Valle L, Miklossy J, Zhang L. Interferon regulatory factor 4 is involved in Epstein-Barr virus-mediated transformation of human B lymphocytes. J Virol. 2008;82:6251–8.

    Article  PubMed  CAS  Google Scholar 

  56. Adami J, Frisch M, Yuen J, Glimelius B, Melbye M. Evidence of an association between non-Hodgkin’s lymphoma and skin cancer. BMJ. 1995;310:1491–5.

    Article  PubMed  CAS  Google Scholar 

  57. Swerdlow AJ, Storm HH, Sasieni PD. Risks of second primary malignancy in patients with cutaneous and ocular melanoma in Denmark, 1943-1989. Int J Cancer. 1995;61:773–9.

    Article  PubMed  CAS  Google Scholar 

  58. Han J, Kraft P, Nan H, Guo Q, Chen C, Qureshi A, et al. A genome-wide association study identifies novel alleles associated with hair color and skin pigmentation. PLoS Genet. 2008;4:e1000074.

    Article  PubMed  Google Scholar 

  59. Pho LN, Leachman SA. Genetics of pigmentation and melanoma predisposition. G Ital Dermatol Venereol. 2010;145:37–45.

    PubMed  CAS  Google Scholar 

  60. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR. The BCL-2 family reunion. Mol Cell. 2010;37:299–310.

    Article  PubMed  CAS  Google Scholar 

  61. Takeuchi O, Fisher J, Suh H, Harada H, Malynn BA, Korsmeyer SJ. Essential role of BAX, BAK in B cell homeostasis and prevention of autoimmune disease. Proc Natl Acad Sci U S A. 2005;102:11272–7.

    Article  PubMed  CAS  Google Scholar 

  62. Bloch DB, de la Monte SM, Guigaouri P, Filippov A, Bloch KD. Identification and characterization of a leukocyte-specific component of the nuclear body. J Biol Chem. 1996;271:29198–204.

    Article  PubMed  CAS  Google Scholar 

  63. Dent AL, Yewdell J, Puvion-Dutilleul F, Koken MH, de The H, Staudt LM. LYSP100-associated nuclear domains (LANDs): description of a new class of subnuclear structures and their relationship to PML nuclear bodies. Blood. 1996;88:1423–6.

    PubMed  CAS  Google Scholar 

  64. Ling PD, Peng RS, Nakajima A, Yu JH, Tan J, Moses SM, et al. Mediation of Epstein-Barr virus EBNA-LP transcriptional coactivation by Sp100. EMBO J. 2005;24:3565–75.

    Article  PubMed  CAS  Google Scholar 

  65. Madani N, Millette R, Platt EJ, Marin M, Kozak SL, Bloch DB, et al. Implication of the lymphocyte-specific nuclear body protein Sp140 in an innate response to human immunodeficiency virus type 1. J Virol. 2002;76:11133–8.

    Article  PubMed  CAS  Google Scholar 

  66. Page-McCaw PS, Amonlirdviman K, Sharp PA. PUF60: a novel U2AF65-related splicing activity. RNA. 1999;5:1548–60.

    Article  PubMed  CAS  Google Scholar 

  67. Duncan R, Bazar L, Michelotti G, Tomonaga T, Krutzsch H, Avigan M, et al. A sequence-specific, single-strand binding protein activates the far upstream element of c-myc and defines a new DNA-binding motif. Genes Dev. 1994;8:465–80.

    Article  PubMed  CAS  Google Scholar 

  68. Liu J, He L, Collins I, Ge H, Libutti D, Li J, et al. The FBP interacting repressor targets TFIIH to inhibit activated transcription. Mol Cell. 2000;5:331–41.

    Article  PubMed  CAS  Google Scholar 

  69. Kovalevska LM, Yurchenko OV, Shlapatska LM, Berdova GG, Mikhalap SV, Van Lint J, et al. Immunohistochemical studies of protein kinase D (PKD) 2 expression in malignant human lymphomas. Exp Oncol. 2006;28:225–30.

    PubMed  CAS  Google Scholar 

  70. Miyamoto Y, Yamauchi J, Itoh H. Src kinase regulates the activation of a novel FGD-1-related Cdc42 guanine nucleotide exchange factor in the signaling pathway from the endothelin A receptor to JNK. J Biol Chem. 2003;278:29890–900.

    Article  PubMed  CAS  Google Scholar 

  71. Ikeda M, Longnecker R. The c-Cbl proto-oncoprotein downregulates EBV LMP2A signaling. Virology. 2009;385:183–91.

    Article  PubMed  CAS  Google Scholar 

  72. Gudmundsson J, Sulem P, Manolescu A, Amundadottir LT, Gudbjartsson D, Helgason A, et al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet. 2007;39:631–7.

    Article  PubMed  CAS  Google Scholar 

  73. Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature. 2007;447:1087–93.

    Article  PubMed  CAS  Google Scholar 

  74. Tomlinson I, Webb E, Carvajal-Carmona L, Broderick P, Kemp Z, Spain S, et al. A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet. 2007;39:984–8.

    Article  PubMed  CAS  Google Scholar 

  75. Yeager M, Orr N, Hayes RB, Jacobs KB, Kraft P, Wacholder S, et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet. 2007;39:645–9.

    Article  PubMed  CAS  Google Scholar 

  76. Amundadottir LT, Sulem P, Gudmundsson J, Helgason A, Baker A, Agnarsson BA, et al. A common variant associated with prostate cancer in European and African populations. Nat Genet. 2006;38:652–8.

    Article  PubMed  CAS  Google Scholar 

  77. Kiemeney LA, Thorlacius S, Sulem P, Geller F, Aben KK, Stacey SN, et al. Sequence variant on 8q24 confers susceptibility to urinary bladder cancer. Nat Genet. 2008;40:1307–12.

    Article  PubMed  CAS  Google Scholar 

  78. Pomerantz MM, Ahmadiyeh N, Jia L, Herman P, Verzi MP, Doddapaneni H, et al. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nat Genet. 2009;41:882–4.

    Article  PubMed  CAS  Google Scholar 

  79. Shaffer AL, Emre NC, Lamy L, Ngo VN, Wright G, **ao W, et al. IRF4 addiction in multiple myeloma. Nature. 2008;454:226–31.

    Article  PubMed  CAS  Google Scholar 

  80. Crowther-Swanepoel D, Corre T, Lloyd A, Gaidano G, Olver B, Bennett FL, et al. Inherited genetic susceptibility to monoclonal B-cell lymphocytosis. Blood. 2010;116:5957–60.

    Article  PubMed  CAS  Google Scholar 

  81. Di Bernardo MC, Broderick P, Catovsky D, Houlston R. Common genetic variation contributes significantly to the risk of develo** chronic lymphocytic leukemia. Haematologica. 2013;98(3):e23–4.

    Article  PubMed  Google Scholar 

  82. Hamblin TJ. Autoimmune complications of chronic lymphocytic leukemia. Semin Oncol. 2006;33:230–9.

    Article  PubMed  CAS  Google Scholar 

  83. Analo HI, Akanmu AS, Akinsete I, Njoku OS, Okany CC. Seroprevalence study of HTLV-1 and HIV infection in blood donors and patients with lymphoid malignancies in Lagos, Nigeria. Cent Afr J Med. 1998;44:130–4.

    PubMed  CAS  Google Scholar 

  84. Landgren O, Pfeiffer RM, Stewart L, Gridley G, Mellemkjaer L, Hemminki K, et al. Risk of second malignant neoplasms among lymphoma patients with a family history of cancer. Int J Cancer. 2007;120:1099–102.

    Article  PubMed  CAS  Google Scholar 

  85. Landgren O, Rapkin JS, Caporaso NE, Mellemkjaer L, Gridley G, Goldin LR, et al. Respiratory tract infections and subsequent risk of chronic lymphocytic leukemia. Blood. 2007;109:2198–201.

    Article  PubMed  CAS  Google Scholar 

  86. Di Bernardo MC, Broderick P, Harris S, Dyer MJ, Matutes E, Dearden C, et al. Risk of develo** chronic lymphocytic leukemia is influenced by HLA-A class I variation. Leukemia. 2013;27(1):255–8.

    Article  PubMed  Google Scholar 

  87. Damle RN, Calissano C, Chiorazzi N. Chronic lymphocytic leukaemia: a disease of activated monoclonal B cells. Best Pract Res Clin Haematol. 2010;23:33–45.

    Article  PubMed  CAS  Google Scholar 

  88. Zhang SY, Gu HX, Li D, Yang SF, Zhong ZH, Li XK, et al. Association of human leukocyte antigen polymorphism with hepatitis B virus infection and genotypes. Jpn J Infect Dis. 2006;59:353–7.

    PubMed  CAS  Google Scholar 

  89. Souza CF, Noguti EN, Visentainer JE, Cardoso RF, Petzl-Erler ML, Tsuneto LT. HLA and MICA genes in patients with tuberculosis in Brazil. Tissue Antigens. 2012;79:58–63.

    Article  PubMed  CAS  Google Scholar 

  90. Bergamaschi L, Leone MA, Fasano ME, Guerini FR, Ferrante D, Bolognesi E, et al. HLA-class I markers and multiple sclerosis susceptibility in the Italian population. Genes Immun. 2011;11:173–80.

    Article  Google Scholar 

  91. Niens M, Jarrett RF, Hepkema B, Nolte IM, Diepstra A, Platteel M, et al. HLA-A*02 is associated with a reduced risk and HLA-A*01 with an increased risk of develo** EBV+ Hodgkin lymphoma. Blood. 2007;110:3310–5.

    Article  PubMed  CAS  Google Scholar 

  92. Bei JX, Li Y, Jia WH, Feng BJ, Zhou G, Chen LZ, et al. A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci. Nat Genet. 2010;42:599–603.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work in the author’s laboratory is supported by the Leukaemia Lymphoma Research, Cancer Research UK and the Arbib Foundation. GS is in receipt of a PhD studentship from the Institute of Cancer Research.

Conflict of interest: The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard S. Houlston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Speedy, H.E., Sava, G., Houlston, R.S. (2013). Inherited Susceptibility to CLL. In: Malek, S. (eds) Advances in Chronic Lymphocytic Leukemia. Advances in Experimental Medicine and Biology, vol 792. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8051-8_13

Download citation

Publish with us

Policies and ethics

Navigation