An Introduction to In Vitro Nucleic Acid Amplification Techniques

  • Chapter
  • First Online:
Advanced Techniques in Diagnostic Microbiology
  • 4603 Accesses

Abstract

A molecular microbiology detection procedure consists of three basic components: (1) nucleic acid extraction, (2) amplification, and (3) detection/identification. Over the past two decades, the development and optimization of a series of in vitro nucleic acid amplification (NAA) technologies has opened new avenues in diagnostic microbiology for the detection, identification, and characterization of pathogenic organisms [1–3]. These techniques promise to replace traditional culture-based biological replication of live microbial pathogens by enzymatic amplification of specific nucleic acid sequences. These techniques have reduced the dependency of the clinical microbiology laboratory on cultured-based methods and created new opportunities for the field of microbiology to enhance patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tang YW, Persing DH (2009) Diagnostic microbiology. In: Schaechter M (ed) Encyclopedia of microbiology, 3rd edn. Elsevier, Oxford, pp 308–320

    Chapter  Google Scholar 

  2. Read RC, Cornaglia G, Kahlmeter G (2011) Professional challenges and opportunities in clinical microbiology and infectious diseases in Europe. Lancet Infect Dis 11(5):408–415

    Article  PubMed  Google Scholar 

  3. Nolte FS, Caliendo AM (2011) Molecular microbiology. In: Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW (eds) Manual of clinical microbiology, 10th edn. American Society for Microbiology, Washington, DC, pp 27–59

    Google Scholar 

  4. Tang YW, Procop GW, Persing DH (1997) Molecular diagnostics of infectious diseases. Clin Chem 43(11):2021–2038

    PubMed  CAS  Google Scholar 

  5. Tang YW, Mitchell PS, Espy MJ, Smith TF, Persing DH (1999) Molecular diagnosis of herpes simplex virus infections in the central nervous system. J Clin Microbiol 37(7):2127–2136

    PubMed  CAS  Google Scholar 

  6. Yolken RH (2002) Nucleic acid amplification assays for microbial diagnosis: challenges and opportunities. J Pediatr 140(3):290–292

    Article  PubMed  Google Scholar 

  7. Smalling TW, Sefers SE, Li H, Tang YW (2002) Molecular approaches to detecting herpes simplex virus and enteroviruses in the central nervous system. J Clin Microbiol 40(7):2317–2322

    Article  PubMed  CAS  Google Scholar 

  8. Miller MB, Tang YW (2009) Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev 22(4):611–633

    Article  PubMed  CAS  Google Scholar 

  9. Wu W, Tang YW (2009) Emerging molecular assays for detection and characterization of respiratory viruses. Clin Lab Med 29(4):673–693

    Article  PubMed  Google Scholar 

  10. Tang YW, Stratton CW (2010) Staphylococcus aureus: an old pathogen with new weapons. Clin Lab Med 30(1):179–208

    Article  PubMed  Google Scholar 

  11. Eisenstein BI (1990) The polymerase chain reaction. A new method of using molecular genetics for medical diagnosis. N Engl J Med 322(3):178–183

    Article  PubMed  CAS  Google Scholar 

  12. Mullis KB (1990) The unusual origin of the polymerase chain reaction. Sci Am 262(4):56–61, 4–5

    Article  PubMed  CAS  Google Scholar 

  13. Ou CY, Kwok S, Mitchell SW et al (1988) DNA amplification for direct detection of HIV-1 in DNA of peripheral blood mononuclear cells. Science 239(4837):295–297

    Article  PubMed  CAS  Google Scholar 

  14. Healy M, Huong J, Bittner T et al (2005) Microbial DNA ty** by automated repetitive-sequence-based PCR. J Clin Microbiol 43(1):199–207

    Article  PubMed  CAS  Google Scholar 

  15. Tenover FC, Gay EA, Frye S, Eells SJ, Healy M, McGowan JE Jr (2009) Comparison of ty** results obtained for methicillin-resistant Staphylococcus aureus isolates with the DiversiLab system and pulsed-field gel electrophoresis. J Clin Microbiol 47(8):2452–2457

    Article  PubMed  CAS  Google Scholar 

  16. Tang YW, Ellis NM, Hopkins MK, Smith DH, Dodge DE, Persing DH (1998) Comparison of phenotypic and genotypic techniques for identification of unusual aerobic pathogenic gram-negative bacilli. J Clin Microbiol 36(12):3674–3679

    PubMed  CAS  Google Scholar 

  17. Hall L, Wohlfiel S, Roberts GD (2004) Experience with the MicroSeq D2 large-subunit ribosomal DNA sequencing kit for identification of filamentous fungi encountered in the clinical laboratory. J Clin Microbiol 42(2):622–626

    Article  PubMed  CAS  Google Scholar 

  18. Kim JK, Lee HJ, Lee YJ et al (2008) Direct detection of lamivudine-resistant hepatitis B virus mutants by a multiplex PCR using dual-priming oligonucleotide primers. J Virol Methods 149(1):76–84

    Article  PubMed  CAS  Google Scholar 

  19. Han J, Swan DC, Smith SJ et al (2006) Simultaneous amplification and identification of 25 human papillomavirus types with Templex technology. J Clin Microbiol 44(11):4157–4162

    Article  PubMed  CAS  Google Scholar 

  20. Bibby DF, McElarney I, Breuer J, Clark DA (2011) Comparative evaluation of the Seegene Seeplex RV15 and real-time PCR for respiratory virus detection. J Med Virol 83(8):1469–1475

    Article  PubMed  CAS  Google Scholar 

  21. Li H, McCormac MA, Estes RW et al (2007) Simultaneous detection and high-throughput identification of a panel of RNA viruses causing respiratory tract infections. J Clin Microbiol 45(7):2105–2109

    Article  PubMed  CAS  Google Scholar 

  22. Compton J (1991) Nucleic acid sequence-based amplification. Nature 350(6313):91–92

    Article  PubMed  CAS  Google Scholar 

  23. Kwoh DY, Davis GR, Whitfield KM, Chappelle HL, DiMichele LJ, Gingeras TR (1989) Transcription-based amplification system and detection of amplified human immunodeficiency virus type 1 with a bead-based sandwich hybridization format. Proc Natl Acad Sci U S A 86(4):1173–1177

    Article  PubMed  CAS  Google Scholar 

  24. Gaydos CA, Quinn TC, Willis D et al (2003) Performance of the APTIMA Combo 2 assay for detection of Chlamydia trachomatis and Neisseria gonorrhoeae in female urine and endocervical swab specimens. J Clin Microbiol 41(1):304–309

    Article  PubMed  CAS  Google Scholar 

  25. La Rocco MT, Wanger A, Ocera H, Macias E (1994) Evaluation of a commercial rRNA amplification assay for direct detection of Mycobacterium tuberculosis in processed sputum. EurJ Clin Microbiol Infect Dis 13(9):726–731

    Article  Google Scholar 

  26. Ren A, Louie B, Rauch L et al (2008) Screening and confirmation of human immunodeficiency virus type 1 infection solely by detection of RNA. J Med Microbiol 57(Pt 10):1228–1233

    Article  PubMed  Google Scholar 

  27. Moore C, Hibbitts S, Owen N et al (2004) Development and evaluation of a real-time nucleic acid sequence based amplification assay for rapid detection of influenza A. J Med Virol 74(4):619–628

    Article  PubMed  CAS  Google Scholar 

  28. Deiman B, Schrover C, Moore C, Westmoreland D, van de Wiel P (2007) Rapid and highly sensitive qualitative real-time assay for detection of respiratory syncytial virus A and B using NASBA and molecular beacon technology. J Virol Methods 146(1–2):29–35

    Article  PubMed  CAS  Google Scholar 

  29. Hollingsworth RC, Sillekens P, van Deursen P, Neal KR, Irving WL (1996) Serum HCV RNA levels assessed by quantitative NASBA: stability of viral load over time, and lack of correlation with liver disease. J Hepatol 25(3):301–306

    Article  PubMed  CAS  Google Scholar 

  30. Landry ML, Garner R, Ferguson D (2003) Comparison of the NucliSens basic kit (nucleic acid sequence-based amplification) and the Argene Biosoft enterovirus consensus reverse transcription-PCR assays for rapid detection of enterovirus RNA in clinical specimens. J Clin Microbiol 41(11):5006–5010

    Article  PubMed  CAS  Google Scholar 

  31. Walker GT, Fraiser MS, Schram JL, Little MC, Nadeau JG, Malinowski DP (1992) Strand displacement amplification—an isothermal, in vitro DNA amplification technique. Nuc Acids Res 20(7):1691–1696

    Article  CAS  Google Scholar 

  32. Little MC, Andrews J, Moore R et al (1999) Strand displacement amplification and homogeneous real-time detection incorporated in a second-generation DNA probe system, BDProbeTecET. Clin Chem 45(6 Pt 1):777–784

    PubMed  CAS  Google Scholar 

  33. Hellyer TJ, Fletcher TW, Bates JH et al (1996) Strand displacement amplification and the polymerase chain reaction for monitoring response to treatment in patients with pulmonary tuberculosis. J Infect Dis 173(4):934–941

    Article  PubMed  CAS  Google Scholar 

  34. Spears PA, Linn CP, Woodard DL, Walker GT (1997) Simultaneous strand displacement amplification and fluorescence polarization detection of Chlamydia trachomatis DNA. Anal Biochem 247(1):130–137

    Article  PubMed  CAS  Google Scholar 

  35. An L, Tang W, Ranalli TA, Kim HJ, Wytiaz J, Kong H (2005) Characterization of a thermostable UvrD helicase and its participation in helicase-dependent amplification. J Biol Chem 280(32):28952–28958

    Article  PubMed  CAS  Google Scholar 

  36. Chow WH, McCloskey C, Tong Y et al (2008) Application of isothermal helicase-dependent amplification with a disposable detection device in a simple sensitive stool test for toxigenic Clostridium difficile. J Mol Diagn 10(5):452–458

    Article  PubMed  CAS  Google Scholar 

  37. Goldmeyer J, Li H, McCormac M et al (2008) Identification of Staphylococcus aureus and determination of methicillin resistance directly from positive blood cultures by isothermal amplification and a disposable detection device. J Clin Microbiol 46(4):1534–1536

    Article  PubMed  CAS  Google Scholar 

  38. Kim HJ, Tong Y, Tang W et al (2011) A rapid and simple isothermal nucleic acid amplification test for detection of herpes simplex virus types 1 and 2. J Clin Virol 50(1):26–30

    Article  PubMed  CAS  Google Scholar 

  39. Notomi T, Okayama H, Masubuchi H et al (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28(12):E63

    Article  PubMed  CAS  Google Scholar 

  40. Lalande V, Barrault L, Wadel S, Eckert C, Petit JC, Barbut F (2011) Evaluation of a loop-mediated isothermal amplification assay for diagnosis of Clostridium difficile infections. J Clin Microbiol 49(7):2714–2716

    Article  PubMed  Google Scholar 

  41. Birkenmeyer LG, Mushahwar IK (1991) DNA probe amplification methods. J Virol Methods 35(2):117–126

    Article  PubMed  CAS  Google Scholar 

  42. Wu DY, Wallace RB (1989) The ligation amplification reaction (LAR)—amplification of specific DNA sequences using sequential rounds of template-dependent ligation. Genomics 4(4):560–569

    Article  PubMed  CAS  Google Scholar 

  43. Osiowy C (2002) Sensitive detection of HBsAg mutants by a gap ligase chain reaction assay. J Clin Microbiol 40(7):2566–2571

    Article  PubMed  CAS  Google Scholar 

  44. Carroll KC, Aldeen WE, Morrison M, Anderson R, Lee D, Mottice S (1998) Evaluation of the Abbott LCx ligase chain reaction assay for detection of Chlamydia trachomatis and Neisseria gonorrhoeae in urine and genital swab specimens from a sexually transmitted disease clinic population. J Clin Microbiol 36(6):1630–1633

    PubMed  CAS  Google Scholar 

  45. Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G (2002) Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 30(12):e57

    Article  PubMed  Google Scholar 

  46. Reijans M, Dingemans G, Klaassen CH et al (2008) RespiFinder: a new multiparameter test to differentially identify fifteen respiratory viruses. J Clin Microbiol 46(4):1232–1240

    Article  PubMed  CAS  Google Scholar 

  47. Wolffs PF, Vink C, Keijdener J et al (2009) Evaluation of MeningoFinder, a novel multiplex ligation-dependent probe amplification assay for simultaneous detection of six virus species causing central nervous system infections. J Clin Microbiol 47(8):2620–2622

    Article  PubMed  CAS  Google Scholar 

  48. Duck P, Alvarado-Urbina G, Burdick B, Collier B (1990) Probe amplifier system based on chimeric cycling oligonucleotides. Biotechniques 9(2):142–148

    PubMed  CAS  Google Scholar 

  49. Beggs ML, Cave MD, Marlowe C, Cloney L, Duck P, Eisenach KD (1996) Characterization of Mycobacterium tuberculosis complex direct repeat sequence for use in cycling probe reaction. J Clin Microbiol 34(12):2985–2989

    PubMed  CAS  Google Scholar 

  50. Cloney L, Marlowe C, Wong A, Chow R, Bryan R (1999) Rapid detection of mecA in methicillin resistant Staphylococcus aureus using cycling probe technology. Mol Cell Probes 13(3):191–197

    Article  PubMed  CAS  Google Scholar 

  51. Fong WK, Modrusan Z, McNevin JP, Marostenmaki J, Zin B, Bekkaoui F (2000) Rapid solid-phase immunoassay for detection of methicillin-resistant Staphylococcus aureus using cycling probe technology. J Clin Microbiol 38(7):2525–2529

    PubMed  CAS  Google Scholar 

  52. Modrusan Z, Marlowe C, Wheeler D, Pirseyedi M, Bryan RN (2000) CPT-EIA assays for the detection of vancomycin resistant vanA and vanB genes in enterococci. Diagn Microbiol Infect Dis 37(1):45–50

    Article  PubMed  CAS  Google Scholar 

  53. Brown DR, Bryan JT, Cramer H, Fife KH (1993) Analysis of human papillomavirus types in exophytic condylomata acuminata by hybrid capture and Southern blot techniques. J Clin Microbiol 31(10):2667–2673

    PubMed  CAS  Google Scholar 

  54. Schiffman MH, Kiviat NB, Burk RD et al (1995) Accuracy and interlaboratory reliability of human papillomavirus DNA testing by hybrid capture. J Clin Microbiol 33(3):545–550

    PubMed  CAS  Google Scholar 

  55. Muldrew KL, Beqaj SH, Han J et al (2007) Evaluation of a Digene-recommended algorithm for human papillomavirus low-positive results present in a “retest zone”. Am J Clin Pathol 127(1):97–102

    Article  PubMed  Google Scholar 

  56. Lyamichev V, Mast AL, Hall JG et al (1999) Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes. Nature Biotechnol 17(3):292–296

    Article  CAS  Google Scholar 

  57. Cooksey RC, Holloway BP, Oldenburg MC, Listenbee S, Miller CW (2000) Evaluation of the invader assay, a linear signal amplification method, for identification of mutations associated with resistance to rifampin and isoniazid in Mycobacterium tuberculosis. Antimicrob Agents Chemother 44(5):1296–1301

    Article  PubMed  CAS  Google Scholar 

  58. Sreevatsan S, Bookout JB, Ringpis FM et al (1998) Algorithmic approach to high-throughput molecular screening for alpha interferon-resistant genotypes in hepatitis C patients. J Clin Microbiol 36(7):1895–1901

    PubMed  CAS  Google Scholar 

  59. Day SP, Hudson A, Mast A et al (2009) Analytical performance of the Investigational Use Only Cervista HPV HR test as determined by a multi-center study. J Clin Virol 45(Suppl 1):S63–S72

    Article  PubMed  CAS  Google Scholar 

  60. Belinson JL, Wu R, Belinson SE et al (2011) A population-based clinical trial comparing endocervical high-risk HPV testing using hybrid capture 2 and Cervista from the SHENCCAST II Study. Am J Clin Pathol 135(5):790–795

    Article  PubMed  Google Scholar 

  61. Urdea MS, Horn T, Fultz TJ et al (1991) Branched DNA amplification multimers for the sensitive, direct detection of human hepatitis viruses. Nucleic Acids Symp Ser 24:197–200

    PubMed  CAS  Google Scholar 

  62. Lau JY, Davis GL, Kniffen J et al (1993) Significance of serum hepatitis C virus RNA levels in chronic hepatitis C. Lancet 341(8859):1501–1504

    Article  PubMed  CAS  Google Scholar 

  63. Revets H, Marissens D, de Wit S et al (1996) Comparative evaluation of NASBA HIV-1 RNA QT, AMPLICOR-HIV monitor, and QUANTIPLEX HIV RNA assay, three methods for quantification of human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol 34(5):1058–1064

    PubMed  CAS  Google Scholar 

  64. Church D, Gregson D, Lloyd T et al (2011) Comparison of the RealTime HIV-1, COBAS TaqMan 48 v1.0, Easy Q v1.2, and Versant v3.0 assays for determination of HIV-1 viral loads in a cohort of Canadian patients with diverse HIV subtype infections. J Clin Microbiol 49(1):118–124

    Article  PubMed  Google Scholar 

  65. Holguin A, Lopez M, Molinero M, Soriano V (2008) Performance of three commercial viral load assays, Versant human immunodeficiency virus type 1 (HIV-1) RNA bDNA v3.0, Cobas AmpliPrep/Cobas TaqMan HIV-1, and NucliSens HIV-1 EasyQ v1.2, testing HIV-1 non-B subtypes and recombinant variants. J Clin Microbiol 46(9):2918–2923

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Wei Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, H., Tang, YW. (2013). An Introduction to In Vitro Nucleic Acid Amplification Techniques. In: Tang, YW., Stratton, C. (eds) Advanced Techniques in Diagnostic Microbiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3970-7_14

Download citation

Publish with us

Policies and ethics

Navigation