Establishment of Cell Lines from the Human Middle and Inner Ear Epithelial Cells

  • Chapter
  • First Online:
Human Cell Transformation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 720))

  • 1953 Accesses

Abstract

The middle ear infection is the most common childhood infection. In order to elucidate the cell and molecular mechanisms involved in bacterial recognition and innate immune response, we have established a stable human middle ear cell line, which has contributed to the current knowledge concerning the molecular pathogenesis of the middle ear infection. The inner ear, a sensory organ responsible for hearing and balance, is filled with inner ear fluid, and disturbance of the fluid homeostasis results in dizziness and hearing impairment. It has been suggested that the endolymphatic sac (ES) may play a critical role in the fluid homeostasis of the inner ear. We have established a stable human ES cell line and are undertaking cell and molecular characterization of this cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 116.04
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vergison A (2008) Microbiology of otitis media: a moving target. Vaccine 26(Suppl 7):G5–G10

    Article  PubMed  Google Scholar 

  2. Gates GA (1996) Cost-effectiveness considerations in otitis media treatment. Otolaryngol Head Neck Surg 114(4):525–530

    Article  PubMed  CAS  Google Scholar 

  3. Lim DJ, Chun YM, Lee HY, Moon SK, Chang KH, Li JD, Andalibi A (2000) Cell biology of tubotympanum in relation to pathogenesis of otitis media – a review. Vaccine 19(Suppl 1):S17–S25

    Article  PubMed  CAS  Google Scholar 

  4. Lim DJ (1981) Middle ear and inner ear structure and biological function. In: Bernstein JM, Ogra PL (eds) Immunology of the ear. Raven, New York, pp 1–38

    Google Scholar 

  5. Kim SH, Marcus DC (2010) Sodium homeostasis in the inner ear. In: Kim HN, Chung MH, Lee WS (eds) Current opinion on sensorineural hearing loss. Gunsa, Seoul, pp 41–63

    Google Scholar 

  6. Lim DJ, Moon SK (2010) The endolymphatic sac structure and function and their clinical implications: a review. In: Kim HN, Chung MH, Lee WS (eds) Current opinion on sensorineural hearing loss. Gunsa, Seoul, pp 65–84

    Google Scholar 

  7. Lim DJ (1999) Ultrastructure of the endolymphatic duct and sac in normal and Meniere’s disease. In: Harris JP (ed) Meniere’s disease. Kugler, Hague, pp 175–193

    Google Scholar 

  8. Tomiyama S, Harris JP (1987) The role of the endolymphatic sac in inner ear immunity. Acta Otolaryngol 103(3–4):182–188

    Google Scholar 

  9. Lim DJ, Paparella MM, Kimura RS (1967) Ultrastructure of the eustachian tube and middle ear mucosa in the guinea pig. Acta Otolaryngol 63(5):425–444

    Article  PubMed  CAS  Google Scholar 

  10. Lim DJ (1974) Functional morphology of the lining membrane of the middle ear and eustachian tube: an overview. Ann Otol Rhinol Laryngol 83(Suppl 11):15–26

    Google Scholar 

  11. Lim DJ, DeMaria TF, Bakaletz LO (1987) Functional morphology of the tubotympanum related to otitis media: a review. Am J Otol 8(5):385–389

    Article  PubMed  CAS  Google Scholar 

  12. Lim DJ, Birck H (1971) Ultrastructural pathology of the middle ear mucosa in serous otitis media. Ann Otol Rhinol Laryngol 80(6):838–853

    PubMed  CAS  Google Scholar 

  13. Lim DJ (1980) Scanning electron microscopic morphology of the ear. In: Paparella MM, Shumrick CA (eds) Textbook of otolaryngology, vol 1. WB Saunders, Philadelphia, pp 439–469

    Google Scholar 

  14. Lim DJ (1986) Functional structure of the organ of corti: a review. Hear Res 22:117–146

    Article  PubMed  CAS  Google Scholar 

  15. Lim DJ, Lane WC (1969) Three-dimensional observation of the inner ear with the scanning electron microscope. Trans Am Acad Ophthalmol Otolaryngol 73(5):842–872

    PubMed  CAS  Google Scholar 

  16. Lim DJ, Lane WC (1969) Cochlear sensory epithelium. A scanning electron microscopic observation. Ann Otol Rhinol Laryngol 78(4):827–841

    PubMed  CAS  Google Scholar 

  17. Matsumoto N, Kalinec F (2005) Prestin-dependent and prestin-independent motility of guinea pig outer hair cells. Hear Res 208(1–2):1–13

    Article  PubMed  CAS  Google Scholar 

  18. Linthicum FH Jr, Tian Q, Milicic M (1995) Constituents of the endolymphatic tubules as demonstrated by three-dimensional morphometry. Acta Otolaryngol 115(2):246–250

    Article  PubMed  Google Scholar 

  19. Tian Q, Rask-Andersen H, Linthicum FH Jr (1994) Identification of substances in the endolymphatic sac. Acta Otolaryngol 114(6):632–636

    Article  PubMed  CAS  Google Scholar 

  20. Akiyama K, Miyashita T, Mori T, Inamoto R, Mori N (2008) Expression of thiazide-sensitive Na+-Cl− cotransporter in the rat endolymphatic sac. Biochem Biophys Res Commun 371(4):649–653

    Article  PubMed  CAS  Google Scholar 

  21. Akiyama K, Miyashita T, Mori T, Mori N (2007) Expression of the Na+-K+-2Cl− cotransporter in the rat endolymphatic sac. Biochem Biophys Res Commun 364(4):913–917

    Article  PubMed  CAS  Google Scholar 

  22. Wackym PA, Friberg U, Linthicum FH Jr, Bagger-Sjoback D, Bui HT, Hofman F, Rask-Andersen H (1987) Human endolymphatic sac: morphologic evidence of immunologic function. Ann Otol Rhinol Laryngol 96(3 Pt 1):276–281

    PubMed  CAS  Google Scholar 

  23. Rask-Andersen H, Stahle J (1979) Lymphocyte-macrophage activity in the endolymphatic sac. An ultrastructural study of the rugose endolymphatic sac in the guinea pig. ORL J Otorhinol Relat Spec 41(4):177–192

    Article  CAS  Google Scholar 

  24. Barbara M, Rask-Andersen H, Bagger-Sjoback D (1987) Ultrastructure of the endolymphatic sac in the Mongolian gerbil. Arch Otorhinolaryngol 244(5):284–287

    Article  PubMed  CAS  Google Scholar 

  25. Peters TA, Tonnaer EL, Kuijpers W, Cremers CW, Curfs JH (2002) Differences in endolymphatic sac mitochondria-rich cells indicate specific functions. Laryngoscope 112(3):534–541

    Article  PubMed  Google Scholar 

  26. Hulander M, Kiernan AE, Blomqvist SR, Carlsson P, Samuelsson EJ, Johansson BR, Steel KP, Enerback S (2003) Lack of pendrin expression leads to deafness and expansion of the endolymphatic compartment in inner ears of Foxi1 null mutant mice. Development 130(9):2013–2025

    Article  PubMed  CAS  Google Scholar 

  27. Moon SK, Lim DJ, Lee HK, Kim HN, Yoo JH (2000) Mucin gene expression in cultured human middle ear epithelial cells. Acta Otolaryngol 120(8):933–939

    Article  PubMed  CAS  Google Scholar 

  28. Chun YM, Moon SK, Lee HY, Webster P, Brackmann DE, Rhim JS, Lim DJ (2002) Immortalization of normal adult human middle ear epithelial cells using a retrovirus containing the E6/E7 genes of human papillomavirus type 16. Ann Otol Rhinol Laryngol 111(6):507–517

    PubMed  Google Scholar 

  29. Moon SK, Yoo JH, Kim HN, Lim DJ, Chung MH (2000) Effects of retinoic acid, triiodothyronine and hydrocortisone on mucin and lysozyme expression in cultured human middle ear epithelial cells. Acta Otolaryngol 120(8):944–949

    Article  PubMed  CAS  Google Scholar 

  30. Wang B, Lim DJ, Han J, Kim YS, Basbaum CB, Li JD (2002) Novel cytoplasmic proteins of nontypeable Haemophilus influenzae up-regulate human MUC5AC mucin transcription via a positive p38 mitogen-activated protein kinase pathway and a negative phosphoinositide 3-kinase-Akt pathway. J Biol Chem 277(2):949–957

    Article  PubMed  CAS  Google Scholar 

  31. Jono H, Xu H, Kai H, Lim DJ, Kim YS, Feng XH, Li JD (2003) Transforming growth factor-beta-Smad signaling pathway negatively regulates nontypeable Haemophilus influenzae-induced MUC5AC mucin transcription via mitogen-activated protein kinase (MAPK) phosphatase-1-dependent inhibition of p38 MAPK. J Biol Chem 278(30):27811–27819

    Article  PubMed  CAS  Google Scholar 

  32. Jono H, Shuto T, Xu H, Kai H, Lim DJ, Gum JR Jr, Kim YS, Yamaoka S, Feng XH, Li JD (2002) Transforming growth factor-beta-Smad signaling pathway cooperates with NF-kappa B to mediate nontypeable Haemophilus influenzae-induced MUC2 mucin transcription. J Biol Chem 277(47):45547–45557

    Article  PubMed  CAS  Google Scholar 

  33. Ganz T, Selsted ME, Lehrer RI (1990) Defensins. Eur J Haematol 44(1):1–8

    Article  PubMed  CAS  Google Scholar 

  34. Moon SK, Lee HY, Li JD, Nagura M, Kang SH, Chun YM, Linthicum FH, Ganz T, Andalibi A, Lim DJ (2002) Activation of a Src-dependent Raf-MEK1/2-ERK signaling pathway is required for IL-1alpha-induced upregulation of beta-defensin 2 in human middle ear epithelial cells. Biochim Biophys Acta 1590(1–3):41–51

    Article  PubMed  CAS  Google Scholar 

  35. Lee HY, Takeshita T, Shimada J, Akopyan A, Woo JI, Pan H, Moon SK, Andalibi A, Park RK, Kang SH, Kang SS, Gellibolian R, Lim DJ (2008) Induction of beta defensin 2 by NTHi requires TLR2 mediated MyD88 and IRAK-TRAF6-p38MAPK signaling pathway in human middle ear epithelial cells. BMC Infect Dis 8:87

    Article  PubMed  Google Scholar 

  36. Moon SK, Lee HY, Pan H, Takeshita T, Park R, Cha K, Andalibi A, Lim DJ (2006) Synergistic effect of interleukin 1 alpha on nontypeable Haemophilus influenzae-induced up-regulation of human beta-­defensin 2 in middle ear epithelial cells. BMC Infect Dis 6:12

    Article  PubMed  Google Scholar 

  37. Medzhitov R, Janeway C Jr (2000) Innate immune recognition: mechanisms and pathways. Immunol Rev 173:89–97

    Article  PubMed  CAS  Google Scholar 

  38. Shuto T, Imasato A, Jono H, Sakai A, Xu H, Watanabe T, Rixter DD, Kai H, Andalibi A, Linthicum F, Guan YL, Han J, Cato AC, Lim DJ, Akira S, Li JD (2002) Glucocorticoids synergistically enhance nontypeable Haemophilus influenzae-induced Toll-like receptor 2 expression via a negative cross-talk with p38 MAP kinase. J Biol Chem 277(19):17263–17270

    Article  PubMed  CAS  Google Scholar 

  39. Shuto T, Xu H, Wang B, Han J, Kai H, Gu XX, Murphy TF, Lim DJ, Li JD (2001) Activation of NF-kappa B by nontypeable Hemophilus influenzae is mediated by toll-like receptor 2-TAK1-dependent NIK-IKK alpha /beta-I kappa B alpha and MKK3/6-p38 MAP kinase signaling pathways in epithelial cells. Proc Natl Acad Sci U S A 98(15):8774–8779

    Article  PubMed  CAS  Google Scholar 

  40. Linder B, Bostrom M, Gerdin B, Rask-Andersen H (2001) In vitro growth of human endolymphatic sac cells: a transmission electron microscopic and immunohistochemical study in patients with vestibular schwannoma and Meniere’s disease. Otol Neurotol 22(6):938–943

    Article  PubMed  CAS  Google Scholar 

  41. Adlington P (1967) The ultrastructure and the functions of the saccus endolymphaticus and its decompression in Meniere’s disease. J Laryngol Otol 81(7):759–776

    Article  PubMed  CAS  Google Scholar 

  42. Adlington P (1984) The saccus endolymphaticus in the rabbit. Further studies. J Laryngol Otol 98(9):857–877

    Article  PubMed  CAS  Google Scholar 

  43. Seymour JC (1954) Observations on the circulation in the cochlea. J Laryngol Otol 68(10):689–711

    Article  PubMed  CAS  Google Scholar 

  44. Porubsky ES, Marovitz WF, Arenberg IK (1972) Presence of acidic protein-bound carbohydrates in the endolymphatic sac and duct of fetal, neonatal and adult rats, and adult humans. Ann Otol Rhinol Laryngol 81(1):76–81

    PubMed  CAS  Google Scholar 

  45. Friberg U, Wackym PA, Bagger-Sjoback D, Rask-Andersen H (1986) Effect of labyrinthectomy on the endolymphatic sac. A histological, ultrastructural and computer-aided morphometric investigation in the mouse. Acta Otolaryngol 101(3–4):172–182

    Article  PubMed  CAS  Google Scholar 

  46. Barbara M, Takumida M, Nilsson J, Bagger-Sjoback D, Rask-Andersen H (1989) Turnover of sulphur compounds in the endolymphatic sac: an autoradiographic study in the Mongolian gerbil. ORL J Otorhinol Relat Spec 51(1):1–7

    Article  CAS  Google Scholar 

  47. Friberg U, Erwall C, Bagger-Sjoback D, Rask-Andersen H (1989) Hyaluronan content in human inner ear fluids. Acta Otolaryngol 108(1–2):62–67

    Article  PubMed  CAS  Google Scholar 

  48. Ishida T, Hatae T, Nishi N, Araki N (2006) Soluble megalin is accumulated in the lumen of the rat endolymphatic sac. Cell Struct Funct 31(2):77–85

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We would like to express our profound thanks for the guidance and assistance of Dr. Johng Rhim in establishing human middle ear and endolymphatic sac cell lines. This work was supported in part by grants DC5025 and DC6276 from the NIH, NIDCD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lim, D.J., Moon, S.K. (2011). Establishment of Cell Lines from the Human Middle and Inner Ear Epithelial Cells. In: Rhim, J., Kremer, R. (eds) Human Cell Transformation. Advances in Experimental Medicine and Biology, vol 720. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0254-1_2

Download citation

Publish with us

Policies and ethics

Navigation