The Photodissociation Dynamics of H2S and CF3NO

  • Conference paper
Energy Storage and Redistribution in Molecules

Abstract

It has been known since the earliest investigations of photochemistry that energy scrambling in a molecule can lead to dissociation if the total energy of a molecule exceeds the dissociation limit of one or more molecular bonds. But how complete is the scrambling, and what does it tell us about the nature of the potential energy surfaces or the mechanism of dissociation? A partial answer to these questions can be gained by a newly developed experimental technique that uses one laser to dissociate a parent molecule and a second to probe the energy distribution of the photofragments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Asscher, Y. Haas, M. P. Roellig, and P. L. Houston, Two-photon Excitation as a Monitoring Technique for Photodissociation Dynamics: CF3NO → CF3 + NO (v,J), J. Chem. Phys. 72: 768 (1980).

    Article  ADS  Google Scholar 

  2. M. P. Roellig, P. L. Houston, M. Asscher, and Y. Haas, CF3NO Photodissociation Dynamics, J. Chem. Phys. 73: 5081 (1980).

    Article  ADS  Google Scholar 

  3. W. G. Hawkins and P. L. Houston, 193-nm Photodissociation of H2S: The SH Internal Energy Distribution, J. Chem. Phys. 73: 297 (1980).

    Article  ADS  Google Scholar 

  4. E. Warburg and W. Rump, Über die Photolyse der Lösungen von Schwefelwasserstoff in Hexan und in Wasser, Z. Physik, 58: 291 (1929).

    Article  ADS  Google Scholar 

  5. C. F. Goodeve and N. O. Stein, The Absorption Spectra and the Optical Dissociation of the Hydrides of the Oxygen Groups, Trans. Farad. Soc. 27: 393 (1931).

    Article  Google Scholar 

  6. G. Porter, The Absorption Spectroscopy of Substances of Short Life, Disc. Farad. Soc. 9: 60 (1950).

    Article  Google Scholar 

  7. D. A. Ramsay, Absorption Spectra of SH and SD Produced by Flash Photolysis of H2S and D2S, J. Chem. Phys. 20: 1920 (1952).

    Article  ADS  Google Scholar 

  8. R. G. Gann and J. Dubrin, Energy Partition in the Photodissociation of a Polyatomic System H2S + hν(2138 Å)→H + SH, J. Chem. Phys. 47: 1867 (1967).

    Article  ADS  Google Scholar 

  9. G. P. Sturm and J. M. White, Photodissociation of Hydrogen Sulfide and Methanethiol. Wavelength Dependence of the Distribution of Energy in the Primary Products, J. Chem. Phys. 50: 5035 (1969).

    Article  ADS  Google Scholar 

  10. A. P. Baronavski and J. R. McDonald, Electronic, Vibrational and Rotational Energy Partitioning of CN Radicals from the Laser Photolysis of ICN at 266 nm, Chem. Phys. Lett. 45: 172 (1977).

    Article  ADS  Google Scholar 

  11. K. Holdy, L. Klotz, and K. R. Wilson, Molecular Dynamics of Photodissociation: Quasidiatomic Model for ICN, J. Chem. Phys. 52: 4588 (1970).

    Article  ADS  Google Scholar 

  12. W. G. Hawkins and P. L. Houston, in preparation.

    Google Scholar 

  13. J. Mason, Perfluoroalkyl Compounds of Nitrogen. Part VI. The Photolysis of Trifluoronitrosomethane, J. Chem. Soc. 1963: 4537.

    Google Scholar 

  14. J. Jander and R. N. Haszeldine, Addition of Free Radicals to Unsaturated Systems. Part VI. Free-radical Addition to the Nitroso-group, J. Chem. Soc. 1954: 696.

    Google Scholar 

  15. K. G. Spears and L. Hoffland, Radiationless pathways in CF3NO, J. Chem. Phys. 66: 1755 (1977).

    Article  ADS  Google Scholar 

  16. K. G. Spears, A Stochastic Description for Vibrational Relaxation in Electronically Excited CF3NO, Chem. Phys. Lett. 54: 139 (1978).

    Article  ADS  Google Scholar 

  17. M. P. Roellig and P. L. Houston, Photodissociation of CF3NO: Observation of NO(v=l), Chem. Phys. Lett. 57: 75 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this paper

Cite this paper

Houston, P.L. (1983). The Photodissociation Dynamics of H2S and CF3NO. In: Hinze, J. (eds) Energy Storage and Redistribution in Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3667-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3667-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3669-3

  • Online ISBN: 978-1-4613-3667-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation