Ultimate Limits in Integrated Optics

  • Chapter
Integrated Optics

Part of the book series: NATO Advanced Studies Institutes Series ((ASIB,volume 91))

  • 342 Accesses

Abstract

Before exploring the boundaries of this intriguing new discipline, we have to remind ourselves that the field of integrated optics is still in its infancy, still in its research stage, and still searching for its proper role. At this early stage, when many discoveries are yet to be made, it may appear somewhat futile to attempt to forecast the limitations of this infant technology, and it is certainly premature to try detailed comparisons with established technologies such as silicon integrated circuits. Yet, there are some crude patterns emerging that indicate limits in the size, speed, and power consumption of integrated optical devices and circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. W. S. Chang, W. M. Muller, and F. J. Rosenbaum, “Integrated Optics in Laser Applications”, Vol. 2, Academic Press, New York (1974)

    Google Scholar 

  2. H. F. Taylor and A. Yariv, “Guided Wave Optics”, Proc. IEEE 62: 1044 (1974).

    Article  Google Scholar 

  3. P. K. Tien, “Integrated Optics”, Sci. Amer. 230: 28 (1971).

    Article  Google Scholar 

  4. P. K. Cheo, “Thin-Film Waveguide Devices”, Appl. Phys. 6: 1 (1975).

    Article  ADS  Google Scholar 

  5. H. Kogelnik, “An Introduction to Integrated Optics”, IEEE Trans. Microwave Theory Tech. MTT–23: 2 (1975).

    Google Scholar 

  6. D. Ostrowsky, “L’Optique Integree”, La Recherche 6: 740 (1975).

    ADS  Google Scholar 

  7. Y. Suematsu, “The Progress of Integrated Optics in Japan”, IEEE Trans. Microwave Theory Tech. MTT-23: l6 (1975).

    Google Scholar 

  8. E. M.Conwell, “Integrated Optics”, Phys. Today 29: 48 (1976).

    Article  ADS  Google Scholar 

  9. P. K. Tien, “Integrated Optics and New Wave Phenomena in Optical Waveguides”, Rev. Mod. Phys. 49: 361 (1977).

    Article  ADS  Google Scholar 

  10. H. Kogelnik, “Review of Integrated Optics”, Fiber Integrated Opt. 1: 227 (1978).

    Article  ADS  Google Scholar 

  11. M. K. Barnoski, Ed., “Introduction to Integrated Optics”, Plenum Press, New York (1973).

    Google Scholar 

  12. T. Tamir, Ed., “Integrated Optics”, Springer, Berlin, Germany (1975).

    Google Scholar 

  13. H. Kogelnik, “Limits in Integrated Optics”, Proc. of IEEE 69: 232 (1981).

    Article  ADS  Google Scholar 

  14. H. Kogelnik and V. Ramaswamy, “Scaling Rules for Thin-Film Optical Waveguides”, Appl. Opt. 13: 1857 (1974).

    Article  ADS  Google Scholar 

  15. H. Kogelnik, “Theory of Dielectric Waveguides”, in: “Integrated Optics”, T. Tamir, Ed., Springer, Berlin, Germany (1975).

    Google Scholar 

  16. D. M. Bloom, L. F. Mollenauer, C. Lin, D. W. Taylor and A. M. DelGaudio, “Direct Demonstration of Distortionless Picosecond-Pulse Propagation in Kilometer-Length Optical Fibers”, Opt. Lett. 4: 291 (1979).

    Article  ADS  Google Scholar 

  17. H. G. Unger, “Optical Pulse Distortion in Glass Fibers at the Wavelength of Minimum Dispersion”, Arch. ElekÜbertragung. 31: 518 (1977).

    Google Scholar 

  18. R. W. Dixon, “Current Directions in GaAs Laser Device Development”, Bell Syst. Tech. J. 59: 669 (1980).

    ADS  Google Scholar 

  19. H. A. Haus and P. T. Ho, “Effect of Noise on Active Modelocking of a Diode Laser”, IEEE J. Quantum. Electron. QE–15: 1258 (1979).

    Google Scholar 

  20. D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, “Grating Filters for Thin-Film Optical Waveguides”, Appl. Phys. Lett. 24: 194 (1974)

    Article  ADS  Google Scholar 

  21. R. V. Schmidt, D. C. Flanders, C. V. Shank, and R. D. Standley, Appl. Phys. Lett. 25: 651 (1974).

    Article  ADS  Google Scholar 

  22. M. Matsuhura, K. O. Hill, and A. Watanabe, J. Opt. Soc. Amer. 236 65: 804 (1975).

    ADS  Google Scholar 

  23. P. S. Cross and H. Kogelnik, “Sidelobe Suppression in Corrugated Waveguide Filters”, Opt. Lett. 1: U3 (1977).

    Article  ADS  Google Scholar 

  24. C. S. Hong, J. B. Shellan, A. C. Livanos, A. Yariv, and A. Katsir, “Broadband Grating Filters for Thin-Film Optical Waveguides”. Appl. Phys. Lett. 31: 276 (1977).

    Article  ADS  Google Scholar 

  25. R. C. Alferness and R. V. Schmidt, “Tunable Optical Waveguide Directional Coupler Filter”, Appl. Phys. Lett. 33:l6l (1978).

    Article  ADS  Google Scholar 

  26. R. C. Alferness and L. L. Buhl, Opt. Lett. 5: 473 (1980).

    Article  ADS  Google Scholar 

  27. I. P. Kaminow, “Optical Waveguide Modulators”, IEEE Trans. Microwave Theory Tech. MTT-23: 57 (1975).

    Google Scholar 

  28. J. M. Hammer, “Modulation and Switching of Light in Dielectric Waveguides”, in: “Integrated Optics”, T. Tamir, Ed., Springer Berlin, Germany (1975).

    Google Scholar 

  29. R. V. Schmidt and R. C. Alferness, “Directional Coupler Switches, Modulators and Filters Using Alternating A3 Techniques”, IEEE Trans. Circuits Syst. CAS-26: 1099 (1979).

    Google Scholar 

  30. R. V. Schmidt and P. S. Cross, “Efficient Optical Waveguide Switch/Amplitude Modulator”, Opt. Lett. 2: 145 (1978).

    Article  Google Scholar 

  31. I. P. Kaminow and E. H. Turner, “Linear Electrooptical Materials”, in: “Handbook of Lasers”, Chemical Rubber Co., Cleveland, OH (1971).

    Google Scholar 

  32. E. Garmire, “Semiconductor Components for Monolithic Applications in Integrated Optics”, Springer, Berlin, Germany (1975).

    Google Scholar 

  33. F. K. Reinhart, “Monolithic Optical Integration”, in: Proc. 8th Conf. Solid State Devices (Tokyo, Japan), p. 357 (1980); R. A. Logan and F. K. Reinhart, “Integrated GaAs-AlxGai_xAs Double Heterostructure Laser”, IEEE J. Quantum Electron. QE-ll:46l (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Kogelnik, H. (1983). Ultimate Limits in Integrated Optics. In: Martellucci, S., Chester, A.N. (eds) Integrated Optics. NATO Advanced Studies Institutes Series, vol 91. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3661-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3661-7_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3663-1

  • Online ISBN: 978-1-4613-3661-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation