What We Have Learned from Patch Recordings of Cultured Cells

  • Chapter
Cell Culture in the Neurosciences

Part of the book series: Current Topics in Neurobiology ((CTNB))

Abstract

Dissociated neural cell cultures have been used as model systems to study a host of questions in neurobiology such as regulation of cell differentiation, interactions between cells, mechanisms of morphogenesis and synaptogenesis. Because culture systems are experimentally accessible to anatomical, biochemical, and pharmacological techniques, they provide the investigator with a great deal of information as well as the opportunity to correlate the knowledge obtained from various techniques. Until recently, these advantages of culture systems had not been exploited in studies of the gating properties of ion channels in the excitable membrane. The main reason is that cultured neuronal cells are usually quite small (<30 μm in diameter). Conventional voltage-clamp techniques, which have been used so successfully in nonmammalian preparations, such as squid axon and frog node, cannot be employed as effectively in cultured systems. Membrane potentials in cultured cells are commonly measured with microelectrodes. The tip resistance of microelectrodes used in these cells is usually high, ranging from 10 to 100 MΩ. This results in poor time resolution of the microelectrode voltage clamp. Moreover, electrode penetration often inflicts cell injury, and the ion composition of the cell interior cannot be controlled with this technique. Thus, electrophysiologists were reluctant to choose cultured cells as their preparations despite the successes of some research groups (Moolenaar and Spector, 1977, 1978; Nathan and DeHaan, 1979; Ebihara et al., 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abrahams, S. J., and Holtzman, E.,1973, Secretion and endocytosis in insulin-stimulated rat adrenal medulla cells,J. Cell Biol.56:540–558.

    PubMed  CAS  Google Scholar 

  • Adams, P. R., 1975, An analysis of the dose-response curve at voltage clamped frog endplates, Pfluegers Arch. 360: 145–153.

    CAS  Google Scholar 

  • Aldrich, R. W., and Stevens, C. F.,1983, Inactivation of open and closed sodium channel determined separately, Cold Spring Harbor Symp. Quant. Biol. 48:147–153.

    PubMed  Google Scholar 

  • Aldrich, R. W., and Yellen, G.,1983, Analysis of nonstationary channel kinetics, in: Single-Channel Recording(B. Sakmann and E. Neher, eds.), Plenum Press, New York, pp. 287–300.

    Google Scholar 

  • Aldrich, R. W., Corey, D. P., and Stevens, C. F., 1983, A reinterpretation of mammalian sodium channel gating based on single channel recording, Nature306: 436–441.

    PubMed  CAS  Google Scholar 

  • Almers, W., and Stirling, C., 1984, Distribution of transport proteins over animal cell membranes. J. Membr. Biol. 77: 169–186.

    PubMed  CAS  Google Scholar 

  • Anderson, C. R., and Stevens, C. F., 1973, Voltage clamp analysis of acetylcholine produced by end-plate current fluctuation at frog neuromuscular junction, J. Physiol. 235: 655–691.

    PubMed  CAS  Google Scholar 

  • Anderson, M. J., Cohen, M. W., and Zoryehta, E., 1977, Effect of innervation on the distribution of acetylcholine receptors on cultured muscle cells, J. Physiol. 268: 731–746.

    PubMed  CAS  Google Scholar 

  • Armstrong, C. M., 1981, Sodium channels and gating currents, Physiol. Rev.61: 644–683.

    PubMed  CAS  Google Scholar 

  • Auerbach, A., and Sachs, F.,1983, Flickering of a nicotinic ion channel to a subconductance state, Biophys. J.42:1–10.

    PubMed  CAS  Google Scholar 

  • Axelrod, D., Ravdin, P., Koppel, D. E., Schlessiges, J., Webb, W. W., Elso, E. L., and Podleski, T. R., 1976, Lateral motion of fluorescently labelled acetylcholine receptors in membranes of develo** muscle fibers, Proc. Natl. Acad. Sci. USA 73: 4594–4598.

    PubMed  CAS  Google Scholar 

  • Baker, P. F., and Knight, D. E., 1981, Calcium control of exocytosis and endocytosis in bovine adrenal medullary cells, Philos. Trans. R. Soc. London Ser. B 296: 83–103.

    CAS  Google Scholar 

  • Barrett, J. N., Magleby, K. L., and Pallotta, B. S., 1982, Properties of single calcium-activated potassium channels in cultured rat muscle, J. Physiol. 331: 211–230.

    PubMed  CAS  Google Scholar 

  • Baker, H. C., Daniels, M. P., Pudimat, P. A., Jacques, L., Sugiyama, H., and Christian, C. N., 1981, Characterization and partial purification of a neuronal factor which increases acetylcholine receptor aggregation on cultured muscle cells, Brain Res. 209: 395–404.

    Google Scholar 

  • Bean, R. C., Shepherd, W. C., Chan, H., and Eichner, J., 1969, Discrete conductance fluctuations in lipid bilayer protein membrane,J. Gen. Physiol. 53: 741–757.

    PubMed  CAS  Google Scholar 

  • Benedeczky, I., and Smith, A. D.,1972, Ultrastructural studies on the adrenal medulla of golden hamster: Origin and fate of secretory granules, Z. Zellforsch. Mikrosk. Anat.124:367–386.

    PubMed  CAS  Google Scholar 

  • Bevan, S., and Steinbach, J. H.,1977, The distribution of B-bungarotoxin binding sites on mammalian skeletal muscle develo** in vivo, J. Physiol.267:195–213.

    PubMed  CAS  Google Scholar 

  • Bezanilla, F., and Armstrong, C. M., 1977, Inactivation of Na channel, J. Gen. Physiol. 70: 549–566.

    PubMed  CAS  Google Scholar 

  • Biales, B., Dichter, M., and Tischler, A., 1976, Electrical excitability of cultured adrenal chromaffin cells, J. Physiol. 262: 743–753.

    PubMed  CAS  Google Scholar 

  • Biales, B., Dichter, M. A., and Tischler, A.,1977, Sodium and calcium action potential in pituitary cells, Nature 267:172–174.

    PubMed  CAS  Google Scholar 

  • Blatz, A. L., and Magleby, K. L.,1983, Single voltage-dependent chloride-selective channels of large conductance in cultured rat muscle, Biophys. J. 43:237–241.

    PubMed  CAS  Google Scholar 

  • Bolsover, S. R., 1981, Calcium dependent potassium current in barnacle photoreceptor, J. Gen. Physiol.78: 617–636.

    PubMed  CAS  Google Scholar 

  • Brehm, P., Eckert, R., and Tillotson, D., 1980, Calcium-mediated inactivation of calcium current in paramecium, J. Physiol. 306: 193–203.

    PubMed  CAS  Google Scholar 

  • Brown, A. M., Morimoto, K., Tsuda, Y., and Wilson, D. L., 1981, Ca current-dependent and voltage-dependent inactivation of Ca channels in Helix aspersa, J. Physiol. 320: 193–218.

    CAS  Google Scholar 

  • Byerly, L., and Hagiwara, S., 1982, Calcium currents in internally perfused nerve cell bodies of Limnea stagnalis, J. Physiol. 322: 503–528.

    CAS  Google Scholar 

  • Cacheline, A. B., dePeyer, J. E., Kokubun, S., and Reuter, H., 1983, Ca 2+ channel mod-ulation by 8-bromocyclic AMP in cultured heart cells, Nature 304: 462–464.

    Google Scholar 

  • Camardo, J. S., and Siegelbaum, S. A., 1983, Single-channel analysis in Aplysianeurons: A specific K+ channel is modulated by serotonin and cyclic AMP, in: Single-Channel Recording( B. Sakmann and E. Neher, eds.), Plenum Press, New York, pp. 409–422.

    Google Scholar 

  • Castellucci, V., and Kandel, E. R., 1976, Presynaptic facilitation as a mechanism for behavioral sensitization in Aplysia, Science 194: 1176–1178.

    CAS  Google Scholar 

  • Catterall, W. A.,1981, Localization of sodium channels in cultured neural cells, J. Neurosci. 1:777–783.

    PubMed  CAS  Google Scholar 

  • Chabala, L. D., Lester, H. A., and Sheridan, R. E., 1982, Single channel currents from cholinergic receptors in cultured muscle, Soc. Neurosci. Abstr. 8: 498.

    Google Scholar 

  • Chiu, S. Y., and Ritchie, J. M., 1980, Potassium channels in nodal and internodal axonal membrane of mammalian myelinated fibres, Nature 284: 170–171.

    PubMed  CAS  Google Scholar 

  • Chiu, S. Y., and Ritchie, J. M., 1981, Evidence for the presence of potassium channels in the paranodal region of acutely demyelinated mammalian single nerve fibers, J. Physiol.313: 415–437.

    PubMed  CAS  Google Scholar 

  • Clapham, D., and Neher, E.,1984, Changes in cell capacitance used to measure exocytosis are prevented by the calmoduhn inhibitor, trifluoperazine, Biophys. J. 45:395a.

    Google Scholar 

  • Cohen, S. A., 1980, Early nerve-muscle synapses in vitrorelease transmitter over postsynaptic membrane having low acetylcholine sensitivity, Proc. Natl. Acad. Sci. USA 77: 644–648.

    PubMed  CAS  Google Scholar 

  • Colquhoun, D., and Hawkes, A. G.,1981, On the stochastic properties of single ion channels, Proc. R. Soc. London Ser. B 211:205–235.

    CAS  Google Scholar 

  • Colquhoun, D., and Hawkes, A. G.,1983, The principles of the stochastic interpretation of ion-channel mechanisms, in: Single-Channel Recording(B. Sakmann and E. Neher, eds.), Plenum Press, New York, pp. 135–176.

    Google Scholar 

  • Colquhoun, D., and Sakmann, B., 1981, Fluctuations in the microsecond time range of the current through single acetylcholine receptor ion channels, Nature 294: 464–466.

    PubMed  CAS  Google Scholar 

  • Colquhoun, D., and Sakmann, B., 1983, Bursts of openings in transmitter-activated ion channels, in: Single-Channel Recording( B. Sakmann and E. Neher, eds.), Plenum Press, New York, pp. 345–364.

    Google Scholar 

  • Colquhoun, D., and Sigworth, T. J., 1983, Fitting and statistical analysis of single channel recordings, in: Single-Channel Recording( B. Sakmann and E. Neher, eds.), Plenum Press, New York, pp. 191–263.

    Google Scholar 

  • Colquhoun, D., Neher, E., Reuter, H., and Stevens, C. F.,1981, Inward current channels activated by intracellular Ca in cultured cardiac cells, Nature 294:752–754.

    PubMed  CAS  Google Scholar 

  • Conti, F., DeFlice, L. J., and Wanke, E., 1975, Potassium and sodium ion current noise in the membrane of the squid giant axon, J. Physiol. 248: 45–82.

    PubMed  CAS  Google Scholar 

  • Conti, F., Hille, B., Neumcke, B., Nonner, W., and Stampfli, R., 1976, Measurement of the conductance of the sodium channel from current fluctuations at the node of Ranvier, J. Physiol. 262: 699–727.

    PubMed  CAS  Google Scholar 

  • Coombs, J. S., Curtis, D. R., and Eccles, J. C., 1957, The generation of impulses in mo-toneurones, J. Physiol. 139: 232–249.

    PubMed  CAS  Google Scholar 

  • Corey, D. P., 1983, Patch clamp: Current excitement in membrane physiology, Neurosci. Comment. 1: 99–110.

    Google Scholar 

  • Corey, D. P., and Stevens, C. F., 1983, Science and technology of patch recording electrodes, in: Single-Channel Recording( B. Sakmann and E. Neher, eds.), Plenum Press, New York, pp. 53–68.

    Google Scholar 

  • Cull-Candy, S. G., Miledi, R., and Parker, I., 1981, Single glutamate-activated channels recorded from locust muscle fibers with perfused patch clamp electrodes, J. Physiol. 321: 195–210.

    PubMed  CAS  Google Scholar 

  • Dionne, V. E., and Leibowitz, M. D.,1982, Acetylcholine receptor kinetics: A description from single-channel currents at snake neuromuscular junctions, Biophys. J. 39:253–261.

    PubMed  CAS  Google Scholar 

  • Dionne, V. E., Steinbach, J. H., and Stevens, C. F.,1978, An analysis of the dose-response relationship at voltage-clamped frog neuromuscular junctions, J. Physiol. 281:421–444.

    PubMed  CAS  Google Scholar 

  • Dodge, F. A., and Cooley, J. W., 1973, Action potential of the motorneuron, IBM J. Res. Develop. 17(3): 219–229.

    Google Scholar 

  • Douglas, W., 1975, Secrotomotor control of adrenal medullary secretion: Synaptic membrane and ion events in stimulus-secretion coupling, in: Handbook of Physiology, Section 7, Volume 6 ( H. Blaschko, G. Savers, and A. D. Smith, eds.), American Physiological Society, Washington D.C., pp. 367–388.

    Google Scholar 

  • Douglas, W. W., and Taraskevitch, P. S., 1977, Action potential (probably calcium spikes) in normal and adenomatous cells of the anterior pituitary and the stimulant effect of thyrotropin releasing hormone, J. Physiol. 272: 41–43.

    Google Scholar 

  • Douglas, W., Kanno, T., and Sampson, S., 1967, Effects of acetylcholine and other medullary secretagogues and antagonists on the membrane potential of adrenal chromaffin cells: An analysis employing techniques of tissue culture, J. Physiol. 188: 107–120.

    PubMed  CAS  Google Scholar 

  • Dubinsky, J. M., and Oxford, G. S., 1984, Effects of TRH on membrane potassium current in clonal pituitary tumor cells, Biophys. J. 45: 143a.

    Google Scholar 

  • Dufy, B., Vincent, J.-D., Fleury, H., Du Pasquier, P., Gourdji, D., and Tixier-Vidal, A., 1979, Membrane effects of thyrotropin-releasing hormone and estrogen shown by intracellular recording from pituitary cells, Science 204: 590–611.

    Google Scholar 

  • Ebihara, L., Shigeto, N., Lieberman, M., and Johnson, E. A., 1980, The initial inward current in spherical clusters of chick embryonic heart cells, J. Gen. Physiol. 75: 437–456.

    PubMed  CAS  Google Scholar 

  • Ehrenstein, G., and Lecar, H., 1977, Electrically gated ionic channels in lipid bilayers, Q. Rev. Biophys. 10: 1–34.

    PubMed  CAS  Google Scholar 

  • Ehrenstein, G., Blumenthal, R., Latone, R., and Lecar, H.,1974, Kinetics of the opening and closing of individual excitability inducing material channels in a lipid bilayer, J. Gen. Physiol. 63:707–721.

    PubMed  CAS  Google Scholar 

  • Fenwick, E. M., Fajdiga, P. B., Howe, N. B. S., and Livett, B. G., 1978, Functional and morphological characterization of isolated bovine adrenal medullary cells, J. Cell Biol. 76: 12–30.

    PubMed  CAS  Google Scholar 

  • Fenwick, E. M., Marty, A., and Neher, E., 1982, Sodium and calcium channels in bovine chromaffin cells, J. Physiol. 331: 599–635.

    PubMed  CAS  Google Scholar 

  • Fishman, H. M., Moore, L. E., and Poussart, D. J. M., 1975, Potassium-ion conduction noise in squid axon membrane, J. Membr. Biol. 24: 305–328.

    PubMed  CAS  Google Scholar 

  • Frank, E., and Fishbach, G. D., 1979, Early events in neuromuscular junction formation in vitro: Induction of acetylcholine receptor clusters in the postsynaptic membrane and morphology of newly formed synapses, J. Cell Biol. 83: 143–158.

    PubMed  CAS  Google Scholar 

  • French, R. J., and Horn, R.,1983, Sodium channel gating: Models, mimics and modifiers, Annu. Rev. Biophys. Bioeng. 12:319–356.

    PubMed  CAS  Google Scholar 

  • Fuortes, M. G. F., Frank, K., and Becker, M. C., 1957, Steps in the production of motoneuron spikes, J. Gen. Physiol. 40: 735–752.

    PubMed  CAS  Google Scholar 

  • Geras, E., Rebecchi, M. J., and Gershengorn, M. C., 1982, Evidence that stimulation of thyrotropin and prolactin secretion by thyrotropin-releasing hormone occur via different calcium-mediated mechanisms: Studies with verapamil, Endocrinology 110: 901–906.

    PubMed  CAS  Google Scholar 

  • Gershengorn, M. C., and Thaw, C., 1983, Calcium influx is not required for TRH to elevate free cytoplasmic calcium in GH3 cells, Endocrinology 113: 1522–1524.

    PubMed  CAS  Google Scholar 

  • Goldman, L., 1976, Kinetics of channel gating in excitable membrane, Q. Rev. Biophys. 9: 491–526.

    PubMed  CAS  Google Scholar 

  • Gorman, A. L. F., Hermann, A., and Thomas, M. V., 1981, Intracellular calcium and the control of neural pacemaker activity, Fed. Proc. 40: 2233–2239.

    PubMed  CAS  Google Scholar 

  • Hagiwara, S., and Byerly, L., 1981, Calcium channel, Annu. Rev. Neurosci. 4: 69–125.

    PubMed  CAS  Google Scholar 

  • Hagiwara, S., and Ohmori, H., 1982, Studies of calcium channels in rat clonal pituitary cells with patch electrode voltage clamp, J. Physiol. 331: 231–252.

    PubMed  CAS  Google Scholar 

  • Hamill, O. P., 1983, Membrane ion channels, in: Topics in Molecular Pharmacology( A. S. V. Bergen and G. C. K. Roberts, eds.), Elsevier Science Publishers, New York, pp. 182–205.

    Google Scholar 

  • Hamill, O. P., and Sakmann, B.,1981, Multiple conductance states of single acetylcholine receptor channels in embryonic muscle cells, Nature 294:462–464.

    PubMed  CAS  Google Scholar 

  • Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pfluegers Arch. 391: 85–100.

    CAS  Google Scholar 

  • Hartzell, H., and Fambrough, D. M., 1973, Acetylcholine receptor production and incorporation into membrane of develo** muscle fibers, Develop. Biol. 30: 153–165.

    PubMed  CAS  Google Scholar 

  • Hodgkin, A. L., and Huxley, A. F., 1952, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 116: 497–506.

    PubMed  CAS  Google Scholar 

  • Horn, R., and Lange, K., 1983, Estimating kinetic constants from single channel data, Biophys. J. 43: 207–223.

    PubMed  CAS  Google Scholar 

  • Horn, R., and Patlak, J., 1980, Single channel currents from excised patches of muscle membrane, Proc. Natl. Acad. Sci. USA 77: 6930–6934.

    PubMed  CAS  Google Scholar 

  • Horn, R., Patlak, J., and Stevens, C. F.,19$1, Sodium channels need not open before they inactivate, Nature 291:426–427.

    Google Scholar 

  • Horn, R., Vandenberg, C. A., and Lange, K., 1984, Statistical analysis of single sodium channels: Effects of N-bromoacetamide, Biophys. J. 45: 323–335.

    PubMed  CAS  Google Scholar 

  • Huang, L.-Y.M., Moran, N., and Ehrenstein, G.,1982, Batrachotoxin modifies the gating kinetics of sodium channels in internally perfused neuroblastoma cells, Proc. Natl. Acad. Sci. USA 79:2082–2085.

    PubMed  CAS  Google Scholar 

  • Huang, L.-Y.M., Moran, N., and Ehrenstein, G., 1984, Gating kinetics of batrachotoxin-modified sodium channels in neuroblastoma cells determined from single-channel measurements, Biophys. J. 45: 313–322.

    PubMed  CAS  Google Scholar 

  • Hume, R. I., Role. L. W., and Fischbach, G. D.,1983, Acetylcholine release from growth cones detected with patches of acetylcholine receptor-rich membranes, Nature 305:632–634.

    PubMed  CAS  Google Scholar 

  • Isenberg, G., 1977, Cardiac Purkinie fibres: Ca2+ controls the potassium permeability via the conductance components gk1 and gk2, Pfluegers Arch. 371: 77–85.

    CAS  Google Scholar 

  • Jackson, M. B., and Lecar, H.,1979, Single postsynaptic channel currents in tissue cultured muscle, Nature 282:863–864.

    PubMed  CAS  Google Scholar 

  • Jackson, M. B., Wong, B. S., Morris, C. E., Lecar, H., and Christian, C. N.,1983, Successive openings of the same acetylcholine receptor channel are correlated in open time, Biophys. J. 42:109–114.

    PubMed  CAS  Google Scholar 

  • Jessell, T. M., Siegel, R. E., and Fischbach, G. D.,1979, Induction of acetylcholine receptors on cultured skeletal muscle by a factor extracted from brain and spinal cord, Proc. Natl. Acad. Sci. USA 76:5397–5401.

    PubMed  CAS  Google Scholar 

  • Katz, B., and Miledi, R., 1969, Tetrodotoxin-resistant electric activity in presynaptic ter-minals, J. Physiol. 203: 459–487.

    PubMed  CAS  Google Scholar 

  • Katz, B., and Miledi, R., 1970, Membrane noise produced by acetylcholine, Nature 226: 962–963.

    PubMed  CAS  Google Scholar 

  • Katz, B., and Miledi, R., 1972, The statistical nature of the acetylcholine potential and its molecular components, J. Physiol. 224: 665–699.

    PubMed  CAS  Google Scholar 

  • Kidokoro, Y., and Yeh, E.,1982, Initial synaptic transmission at the growth cone in Xenopus nerve-muscle cultures, Proc. Natl. Acad. Sci. USA 79:6727–6731.

    PubMed  CAS  Google Scholar 

  • Klein, M., Comardo, J. S., and Kandel, E. R., 1982, Serotonin modulates a specific potassium current in the sensory neurons that show presynaptic facilitation in Aplysia, Proc. Natl. Acad. Sci. USA 79: 5713–5717.

    CAS  Google Scholar 

  • Kostyuk, P. G., and Krishtal, D. A., 1977, Separation of sodium and calcium currents in the somatic membrane of mollusc neurons, J. Physiol. 270: 545–568.

    PubMed  CAS  Google Scholar 

  • Kostyuk, P. G., Krishtal, D. A., and Pidoplichko, V. I., 1975, Effect of internal fluoride and phosphate on membrane currents during intracellular dialysis of nerve cells, Nature 257: 691–693.

    PubMed  CAS  Google Scholar 

  • Land, B. R., Podleski, T. R., Salpeter, E. E., and Salpeter, M. M., 1977, Acetylcholine receptor distribution on myotubes in culture correlated to acetylcholine sensitivity, J. Physiol. 269: 155–176.

    PubMed  CAS  Google Scholar 

  • Latorre, R., and Miller, C., 1983, Conductance and selectivity in potassium channel, J. Membr. Biol. 71: 11–30.

    PubMed  CAS  Google Scholar 

  • Latorre, R., Vergara, C., and Hildago, C.,1982, Reconstitution in planar lipid bilayers of Ca dependent K channel from transverse tubule membrane isolated from rabbit skeletal muscle, Proc. Natl. Acad. Sci. USA 79:805–809.

    PubMed  CAS  Google Scholar 

  • Lee, K. S., Akaike, N., and Brown, A. M.,1978, Properties of internal perfused voltage-clamped, isolated nerve cell bodies, J. Gen. Physiol. 71:489–507.

    PubMed  CAS  Google Scholar 

  • Lee, K. S., Akaike, N., and Brown, A. M., 1980, The suction pipette method for internal perfusion and voltage clamp in small excitable cells, J. Neurosci. Methods 2: 58–78.

    Google Scholar 

  • Lee, K. S. and Tsien, R. W., 1983, Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells. Nature 302: 790–794.

    PubMed  CAS  Google Scholar 

  • Lux, H. D., Neher, E., and Marty, A., 1981, Single channel activity associated with the calcium dependent outward current in Helix pomatia, Pfluegers Arch. 389: 293–295.

    CAS  Google Scholar 

  • Magleby, K. L., and Stevens, C. F.,1972, A quantitative description of end-plate currents, J. Physiol. 223:173–197.

    PubMed  CAS  Google Scholar 

  • Martian, E., and Tsien, R. W., 1981, Is the slow inward calcium current of heart muscle inactivated by calcium?Biophys. J.33: 143a.

    Google Scholar 

  • Marty, A.,1981, Ca-dependent K channels with large unitary conductance in chromaffin cell membranes, Nature 291:497–500.

    PubMed  CAS  Google Scholar 

  • Marty, A., and Neher, E.,1983, Tight-seal whole-cell recording, in: Single-Channel Recording(B. Sakmann and E. Neher, eds.), Plenum Press, New York, pp. 107–122.

    Google Scholar 

  • Maruyama, Y., and Petersen, O. H., 1982a, Single channel currents in isolated patches of plasma membrane from basal surface of pancreatic acini, Nature 299: 159–161.

    CAS  Google Scholar 

  • Maruyama, Y., and Petersen, O. H., 1982b, Cholecystokinin activation of single channel currents is mediated by internal messenger in pancreatic acinar cells, Nature 300: 61–63.

    CAS  Google Scholar 

  • Meech, R. W., 1976, The sensitivity of Helix aspersaneurones to injected calcium ions, J. Physiol. 237: 259–277.

    Google Scholar 

  • Moolenaar, W. H., and Spector, I., 1977, Membrane currents examined under voltage clamp in cultured neuroblastoma cells, Science 196: 331–333.

    PubMed  CAS  Google Scholar 

  • Moolenaar, W. H., and Spector, I., 1978, Ion currents in cultured mouse neuroblastoma cells under voltage clamp conditions, J. Physiol. 278: 265–286.

    PubMed  CAS  Google Scholar 

  • Nathan, R., and DeHaan, R.,1979, Voltage clamp analysis of embryonic heart cell aggregates, J. Gen. Physiol. 73:175–178.

    PubMed  CAS  Google Scholar 

  • Neher, E., and Marty, A.,1982, Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells, Proc. Natl. Acad. Sci. USA 79:6712–6716.

    PubMed  CAS  Google Scholar 

  • Neher, E., and Sakmann, B., 1976, Single-channel currents recorded from membrane of denervated frog muscle fibres, Nature 260: 779–802.

    Google Scholar 

  • Neher, E., and Steinbach, J. H., 1978, Local anesthetics transiently block currents through single acetylcholine-receptor channels, J. Physiol. 277: 153–176.

    PubMed  CAS  Google Scholar 

  • Neher, E., Sakmann, B., and Steinbach, J. H., 1978, The extracellular patch clamp: A method for resolving currents through individual open channels in biological membranes, Pfluegers Arch. 375: 219–228.

    CAS  Google Scholar 

  • Nelson, D. J., and Sachs, F.,1979, Single ionic channels observed in tissue-cultured muscle, Nature 282:861–863.

    PubMed  CAS  Google Scholar 

  • Olek, A. J., Pudimat, P. A., and Daniels, M. P., 1983, Direct observation of the rapid aggregation of acetylcholine receptors on identified cultured myotubes after exposure to embryonic brain extract, Cell 34: 255–264.

    PubMed  CAS  Google Scholar 

  • Osterrieder, W., Brum, G., Hescheler, J., Trautwein, W., Flockerizi, V., and Hofmann, F., 1982, Injection of subunits of cyclic AMP-dependent protein kinase into cardiac myocytes modulates Ca2+ current, Nature 298: 576–578.

    PubMed  CAS  Google Scholar 

  • Ozawa, S., 1981, Biphasic effect of thyrotropin-releasing hormone on membrane K+ permeability in rat clonal pituitary cells, Brain Res. 209: 240–244.

    PubMed  CAS  Google Scholar 

  • Ozawa, S., and Kimura, N., 1979, Membrane potential changes caused by thyrotropin-releasing hormone in the clonal GH3 cell line and their relationship to secretion of pituitary hormone, Proc. Natl. Acad. Sci. USA 76: 6017–6020.

    PubMed  CAS  Google Scholar 

  • Patlak, J., and Horn, R., 1982, Effect of N-bromoacetamide on single sodium channel currents in excised membrane patches, J. Gen. Physiol. 79: 333–351.

    PubMed  CAS  Google Scholar 

  • Podleski, T. R., Axelrod, D., Ravdin, P., Greenberg, I., Johnson, M. M., and Salpeter, M. M., 1978, Nerve extract induces increase and redistribution of acetylcholine receptors on cloned cells, Proc. Natl. Acad. Sci. USA 75: 2035–2039.

    PubMed  CAS  Google Scholar 

  • Putney, J. W., 1979, Stimulus-permeability coupling: Role of Ca in receptor regulation of membrane permeability, Pharmacol. Rev. 30: 209–245.

    Google Scholar 

  • Quandt, F. N., and Narahashi, T.,1982, Modification of single Na+ channels by batrach-otoxin, Proc. Natl. Acad. Sci. USA 79:6732–6736.

    PubMed  CAS  Google Scholar 

  • Reuter, H.,1967, The dependence of the slow inward current on external Ca concentration in Purkinje fibers,J. Physiol.192:479–492.

    PubMed  CAS  Google Scholar 

  • Reuter, H.,1983, Calcium channel modulation by neurotransmitters, enzymes and drugs, Nature 301:569–574.

    PubMed  CAS  Google Scholar 

  • Reuter, H., and Scholz, H., 1977, The regulation of the calcium conductance of cardiac muscle by adrenaline, J. Physiol. 264: 49–62.

    PubMed  CAS  Google Scholar 

  • Reuter, H., Stevens, C. F., Tsien, R. W., and Yellen, G.,1982, Properties of single calcium channels in cardiac cell culture, Nature 297:501–504.

    PubMed  CAS  Google Scholar 

  • Ritchie, A. K., 1983, Activation of K+ permeability in the GH3 anterior pituitary cell line by thyrotropin releasing hormone, Soc. Neurosci. Abstr.22.

    Google Scholar 

  • Roberts, W. M., and Almers, W., 1984, An improved “loose patch” voltage clamp for muscle fibers and neurons, Biophys. J. 45: 185a.

    Google Scholar 

  • Sachs, F., 1983, Is the acetylcholine receptor a unit-conductance channel?, in: Single-Channel Recording( B. Sakmann and E. Neher, eds.), Plenum Press, New York, pp. 365–376.

    Google Scholar 

  • Sachs, F., and Lecar, H., 1973, Acetylcholine noise in tissue culture muscle cells, Nature New Biol.246: 214–216.

    CAS  Google Scholar 

  • Sakmann, B., and Neher, E., 1983, Geometric parameters of pipettes and membrane patches, in: Single-Channel Recording( B. Sakmann and E. Neher, eds.), Plenum Press, New York, pp. 37–51.

    Google Scholar 

  • Sakman, B., Patlak, J. and Neher, E.,1980, Single acetylcholine-activated channels show burst-kinetics in presence of desensitizing concentrations of agonist, Nature 286:71–73.

    Google Scholar 

  • Siegelbaum, S. A., Camardo, J. S., and Kandel, E. R., 1982, Serotonin and cAMP close single K channels in Aplysiasensory neurones, Nature 299: 413–417.

    PubMed  CAS  Google Scholar 

  • Sigworth, F. J., 1982, Fluctuations in the current through open ACh-receptor channels, Biophys. J. 37: 309a.

    Google Scholar 

  • Sigworth, F. J., 1983, Electronic design of the patch clamp, in: Single-Channel Recording( B. Sakmann and E. Neher, eds.), Plenum Press, New York, pp. 3–35.

    Google Scholar 

  • Sigworth, F., and Neher, E.,1980, Single Na+ channels in cultured rat muscle cells, Nature 287:447–449.

    PubMed  CAS  Google Scholar 

  • Sine, S. M., and Steinbach, J. H., 1984, Activation of a nicotinic acetylcholine receptor, Biophys. J. 45: 175–185.

    PubMed  CAS  Google Scholar 

  • Smith, T. G., Jr., Futamachi, K., and Ehrenstein, G., 1982, Site of action potential generation in a giant neuron of Aplysia californica, Brain Res. 242: 184–189.

    Google Scholar 

  • Stühmer, W., and Almers, W., 1982, Photobleaching through glass micropipettes: Sodium channels without lateral mobility in sarcolemma of frog skeletal muscle, Proc. Natl. Acad. Sci. USA 79: 946–950.

    PubMed  Google Scholar 

  • Stühmer, W., Roberts, W. M., and Almers, W., 1983, The loose patch clamp, in: Single-Channel Recording( B. Sakmann and E. Neher, eds.), Plenum Press, New York, pp. 123–134.

    Google Scholar 

  • Tan, K. N., and Tashjian, A. H., 1984, Voltage-dependent calcium channels in pituitary cells in culture. II. Participation in thyrotropin-releasing hormone action on prolactin release. J. Biol. Chem. 259: 427–434.

    PubMed  CAS  Google Scholar 

  • Tillotson, D., 1979, Inactivation of Ca conductance dependent on entry of cation in mol-luscan neurons, Proc. Natl. Acad. Sci. USA 76: 1497–1500.

    PubMed  CAS  Google Scholar 

  • Tixier-Vidal, A., and Gourdji, D., 1981, Mechanism of action of synthetic hypothalamic peptides on anterior pituitary cells, Physiol. Rev. 61: 974–1011.

    PubMed  CAS  Google Scholar 

  • Trautwein, W., Taniguchi, J., and Noma A., 1982, The effect of intracellular cyclic nu-cleotides and calcium on action potential and acetylcholine response of isolated cardiac cells, Pfluegrs Arch. 392: 307–314.

    CAS  Google Scholar 

  • Tsien, R. W., 1983, Calcium channels in excitable cell membranes, Annu. Rev. Physiol.45: 341–358.

    PubMed  CAS  Google Scholar 

  • Unisicker, K., Griesser, G. H., Lindmar, R., Loffelholz, K., and Wolf, U., 1980, Establishment, characterization and fibre outgrowth of isolated bovine adrenal medullary cells in long-term cultures, Neuroscience 5: 1445–1460.

    Google Scholar 

  • Vandenberg, C.A., and Horn, R. A., 1984, Kinetic properties of single Na channel, Biophys J. 45:11a.

    Google Scholar 

  • Vassort, G., Rougier, O., Garnier, D., Sauviat, M. P., Coraboeuf, E., and Gazgouil, Y. M., 1969, Effects of adrenaline on membrane inward current during the cardiac action potential, Pfluegcrs Arch. 309: 70 - 81.

    CAS  Google Scholar 

  • Weiberg, C. B., Reinoss, C. G., and Hall, E. W., 1981, Topographical segregation of old and new acetylcholine receptors at develo** ectopic end plates in adult rat muscle, J. Cell Biol. 88: 215–218.

    Google Scholar 

  • Williams, J. A., 1976, Stimulation of Ca efflux from rat pituitary by luteinizing releasing hormone and other pituitary stimulants, J. Physiol. 260: 105–115.

    PubMed  CAS  Google Scholar 

  • Wong, B. S., Lecar, H., and Adler, M., 1982, Single calcium-dependent potassium channels in clonal anterior pituitary cells, Biophys. J. 39: 313–317.

    PubMed  CAS  Google Scholar 

  • Yamamoto, D., Yeh, J. Z., and Narahashi, T., 1984, Voltage-dependent calcium block of normal and tetramethrin-modified single sodium channel, Biophys. J. 45: 337–344.

    PubMed  CAS  Google Scholar 

  • Yellen, G., 1982, Single Ca 2+ -activated nonselective cation channels in neuroblastoma, Nature 296: 357–359.

    PubMed  CAS  Google Scholar 

  • Young, S. H., and Poo, M.-M., 1983, Spontaneous release of transmitter from growth cones of embryonic neurones, Nature 305: 634–637.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Huang, LY.M. (1985). What We Have Learned from Patch Recordings of Cultured Cells. In: Bottenstein, J.E., Sato, G. (eds) Cell Culture in the Neurosciences. Current Topics in Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2473-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2473-7_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9500-6

  • Online ISBN: 978-1-4613-2473-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation