Plasticity of Ventilatory Chemoreflexes

  • Conference paper
Arterial Chemoreception
  • 63 Accesses

Abstract

The chemosensory neurons of the carotid (sinus) and aortic (depressor) nerves provide the input for the ventilatory chemoreflexes initiated by hypoxic stimulation. The central processes of these neurons converge into the nuclear complex of the solitary tract (NTS). These projections are mostly ipsilateral, but few cross to some contralateral subnuclei (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ciriello J, Calaresu FR (1981). Projections from buffer nerves to the nucleus of the solitary tract: an anatomical and electrophysiological study in the cat. J Autonomic Nery Syst 3: 299–310.

    Article  CAS  Google Scholar 

  2. Serani A, Zapata P (1981). Relative contribution of carotid and aortic bodies to cyanide-induced ventilatory responses in the cat. Arch Int Pharmacodyn Thér 252: 284–297.

    PubMed  CAS  Google Scholar 

  3. Swanson GD, Whipp BJ, Kaufman RD, Aqleh KA, Winter B, Belville JM (1978). Effect of hypercapnia on hypoxic ventilatory drive in carotid bodyresected man. J Appl Physiol 45: 971–977.

    Google Scholar 

  4. Bisgard GE, Forster HV, Klein JP (1980). Recovery of peripheral chemoreceptor function after denervation in ponies. J Appl Physiol 49: 964–970.

    PubMed  CAS  Google Scholar 

  5. Smith PG, Mills E (1980). Restoration of reflex ventilatory response to hypoxia after removal of carotid bodies in the cat. Neuroscience 5: 573–580.

    Article  PubMed  CAS  Google Scholar 

  6. Martin-Body RL, Robson GJ, Sinclair JD (1986). Restoration of hypoxic respiratory responses in the awake rat after carotid body denervation by sinus nerve section. J Physiol (Lond) 380: 61–73.

    CAS  Google Scholar 

  7. Holton P, Wood JB (1965). The effects of bilateral removal of the carotid bodies and denervation of the carotid sinuses in two human subjects. J Physiol (Lond) 181: 365–378.

    CAS  Google Scholar 

  8. Bouverot P, Flandrois R, Puccinelli R, Dejours P (1965). Etude du rôle des chémorécepteurs artériels dans la régulation de la respiration pulmonaire chez le chien éveillé. Arch Int Pharmacodyn Thér 157: 253–271.

    PubMed  CAS  Google Scholar 

  9. Fordyce WE (1987). Hypoxic ventilatory control in the awake cat five years after carotid body resection. Respir Physiol 69: 209–225.

    Article  PubMed  CAS  Google Scholar 

  10. Gautier H, Bonora M (1982). Effects of hypoxia and respiratory stimulants in conscious intact and carotid denervated cats. Bull Eur Physiopathol Respir 18: 565–582.

    PubMed  CAS  Google Scholar 

  11. Zapata P, Stensaas LJ, Eyzaguirre C (1976). Axon regeneration following a lesion of the carotid nerve: electrophysiological and ultrastructural observations. Brain Res 113: 235–253.

    Article  PubMed  CAS  Google Scholar 

  12. Ponte J, Sadler CL (1989). Studies on the regenerated carotid sinus nerve of the rabbit. J Physiol (Lond) 410: 411–424.

    CAS  Google Scholar 

  13. Smith PG, Mills E (1979). Physiological and ultrastructural observations on regenerated carotid sinus nerves after removal of carotid bodies in cats. Neuroscience 4: 2009–2020.

    Article  PubMed  CAS  Google Scholar 

  14. Verna A, Roumy M, Leitner LM (1975). Loss of chemoreceptive properties of the rabbit carotid body after destruction of the glomus cells. Brain Res 100: 13–23.

    Article  PubMed  CAS  Google Scholar 

  15. Sinclair JD, St John W, Bartlett D (1985). Enhancement of respiratory response to carbon dioxide produced by lesioning caudal regions of the nucleus of the tractus solitarius. Brain Res 336: 318–320.

    Article  PubMed  CAS  Google Scholar 

  16. Majumdar S, Smith PG, Mills E (1982). Evidence for central reorganization of ventilatory chemoreflex pathways in the cat during regeneration of visceral afferents in the carotid sinus nerve. Neuroscience 7: 1309–1316.

    Article  PubMed  CAS  Google Scholar 

  17. Majumdar S, Mills E, Smith PG (1983). Degenerative and regenerative changes in central projections of glossopharyngeal and vagal sensory neurons after peripheral axotomy in cats: a structural basis for central reorganization of arterial chemoreflex pathways. Neuroscience 10: 841–849.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this paper

Cite this paper

Zapata, P., Eugenín, J., Larraín, C. (1990). Plasticity of Ventilatory Chemoreflexes. In: Eyzaguirre, C., Fidone, S.J., Fitzgerald, R.S., Lahiri, S., McDonald, D.M. (eds) Arterial Chemoreception. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3388-6_49

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3388-6_49

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7993-8

  • Online ISBN: 978-1-4612-3388-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation