Influence of a Phonon Bath on Electronic Correlations and Optical Response in Molecular Aggregates

  • Chapter
Nonlinear Optical Materials

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 101))

Abstract

A generating function algorithm that allows the calculation of the optical response of coupled exciton-phonon systems is developed. For a model of assemblies of three-level molecules coupled via dipole interaction and interacting linearly with nuclear degrees of freedom, we derive a closed set of equations of motion for five generating functions representing the exact response to third order in the external field. These are equivalent to an infinite hierarchy of equations of motion for phonon-assisted variables. Starting with the equations for the generating functions, several reduction schemes are derived. By eliminating the phonon degrees of freedom in favor of self-energies, the Haken-Strobl model of relaxation is recovered as a limiting case. A set of time-local equations is presented extending the Haken-Strobl treatment by kee** the temperature dependence as well as the excitonic signatures of the phonon self-energies. Finally, we derive equations that interpolate between the coherent and incoherent limits of exciton propagation and properly include the two exciton dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 9.99
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. K. Misawa, K. Minoshima, and T. Kobayashi, J. Raman Spectr. 26, 553 (1995).

    Article  Google Scholar 

  2. J. Moll, S. Dähne, J.R. Durrant, and D.A. Wiersma, J. Chem. Phys. 102, 6362 (1995).

    Article  Google Scholar 

  3. J.R. Durrant, J. Knoester, and D.A. Wiersma, Chem. Phys. Lett. 222, 450 (1994).

    Article  Google Scholar 

  4. K. Misawa, S. Machida, K. Horie, and T. Kobayashi, Chem. Phys. Lett. 240, 210 (1995).

    Article  Google Scholar 

  5. J. Knoester, J. Chem. Phys. 99, 8466 (1993).

    Article  Google Scholar 

  6. V. Chernyak, N. Wang, and S. Mukamel, Phys. Rep. 263, 213 (1995).

    Article  Google Scholar 

  7. M.L. Steigerwald and L.E. Brus, Acc. Chem. Res. 23, 183 (1990).

    Article  Google Scholar 

  8. M. Bawendi, M.L. Steigerwald and L.E. Brus, Ann. Rev. Phys. Chem. 44, 281 (1990).

    Google Scholar 

  9. A.A. Muenter et al., J. Phys. Chem. 96, 2783 (1992).

    Article  Google Scholar 

  10. H. Fidder, J. Knoester, and D.A. Wiersma, Chem. Phys. Lett. 171, 529 (1990).

    Article  Google Scholar 

  11. R. van Grondelle, J.P. Dekker, T. Gillbro, and V. Sundstrom, Biochimica and Biophysica Acta 1187, 1 (1994).

    Article  Google Scholar 

  12. McDermont et al. Nature 374, 517 (1995).

    Article  Google Scholar 

  13. W. Kuhlbrant, D.N. Wang, and Y. Fujiyoshi, Nature 367, 614 (1994).

    Article  Google Scholar 

  14. T. Bittner, G.P. Wiederrecht, K.D. Irrgang, G. Renger, and M.R. Wasielewski, Chem. Phys. 194, 311 (1995).

    Article  Google Scholar 

  15. J. Knoester and S. Mukamel, Phys. Rep. 205, 1 (1991).

    Article  Google Scholar 

  16. S. Mukamel, in Nonlinear Optical Properties of Organic Molecules and Crystals, Vol. 3, Editor J. Zyss, Academic Press, 1993.

    Google Scholar 

  17. O. Dubovsky and S. Mukamel, J. Chem. Phys. 95, 7828 (1991).

    Article  Google Scholar 

  18. J.A. Leegwater and S. Mukamel, Phys. Rev. A 46, 452 (1992).

    Article  Google Scholar 

  19. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford, New York) (1995).

    Google Scholar 

  20. V. Chernyak and S. Mukamel, Phys. Rev. B 48, 2470 (1993).

    Article  Google Scholar 

  21. T. Förster, Ann. Physik (Leipzig) 2, 55 (1948).

    Article  MATH  Google Scholar 

  22. T. Förster, in Modern Quantum Chemistry (O. Sinannoglu, ed.) Acadenic Press, New York, London, 93–137 (1965).

    Google Scholar 

  23. W.S. Struve, in Anoxigenic photo synthetic bacteria (R.E. Blankenship, M.T. Madigan, and C.E. Bauer, eds), Kluver Academic Publishers, Dordrecht, 297–313 (1995).

    Google Scholar 

  24. H. Haken and G. Strobl, Z. Phys. 262, 135 (1973).

    Article  MathSciNet  Google Scholar 

  25. A.S. Davidov, Theory of Molecular Excitons, Plenum Press, New York London, 1971.

    Google Scholar 

  26. M. Hartmann and W. Schäfer, phys. stat. sol. (b) 173, 165 (1992).

    Article  Google Scholar 

  27. D.B. Tran Thoai and H. Haug, Phys. Rev. B 47, 3574 (1993).

    Article  Google Scholar 

  28. L. Bányai, D.B. Tran Thoai, E. Reitsamer, H. Haug, D. Steinbacher, M.U. Wehner, M. Wegener, T. Marschner, and W. Stolz, Phys. Rev. Lett. 75, 2188 (1995).

    Article  Google Scholar 

  29. V. Chernyak and S. Mukamel, phys. stat. sol. (b) 189, 67 (1995).

    Article  Google Scholar 

  30. B. Dick and R.M. Hochstrasser, Chem. Phys. 75, 133 (1983).

    Article  Google Scholar 

  31. I. Abram, A. Maruani, and S. Schmitt-Rink, J. Phys. C 17, 5163 (1984).

    Article  Google Scholar 

  32. V. Chernyak and S. Mukamel, J. Chem. Phys. 105, 4565 (1996).

    Article  Google Scholar 

  33. R. Silbey and R.W. Munn, J. Chem. Phys. 72, 2763 (1980).

    Article  Google Scholar 

  34. R.W. Munn, J. Chem. Phys. 83, 1843, 1854 (1985).

    Article  Google Scholar 

  35. A.O. Caldeira and A.J. Leggett, Phys. Status Solidi A 121, 587 (1983).

    MathSciNet  MATH  Google Scholar 

  36. T.-M. Wu, D.W. Brown, K. Lindenberg, and J. Lumin. 45, 245 (1990); Phys. Rev. B 47, 10122 (1993).

    Google Scholar 

  37. J.M. Jean, R.F. Friesner, and G.R. Fleming, J. Chem. Phys. 96, 5827 (1992); J.M. Jean and G.R. Fleming, J. Chem. Phys. 103, 2092 (1995).

    Article  Google Scholar 

  38. T. Holstein, Ann. Phys. (NY), 8, 325, 343 (1959); D. Emin and T. Holstein, Ann. Phys. (NY), 53, 439 (1969).

    Article  Google Scholar 

  39. O. Kühn, V. Chernyak and S. Mukamel, J. Chem. Phys. 105, 8586 (1996).

    Article  Google Scholar 

  40. O. Kühn and S. Mukamel, J. Phys. Chem. 101, 809 (1997).

    Google Scholar 

  41. J. Singh, Excitation Energy Transfer Processes in Condensed Matter, (Plenum Press, New York London), 1994.

    Google Scholar 

  42. H. Böttger and V.V. Bryksin, Hop** Conduction in Solids, VCH, 1985

    Google Scholar 

  43. V.M. Axt, K. Victor, and A. Stahl, Phys. Rev. B 53, 7244 (1996).

    Article  Google Scholar 

  44. G.D. Mahan, Many-Particle Physics second edition (Plenum, New York, London), (1990)

    Book  Google Scholar 

  45. R. Zimmermann, phys. stat. sol. (b) 159, 317 (1990).

    Article  Google Scholar 

  46. J. Schilp, T. Kuhn, and G. Mahler, Phys. Rev. B 50, 5435 (1994), J. Schilp, T. Kuhn, G. Mahler, Semicond. Sci. Techmol. 9, 439 (1994).

    Article  Google Scholar 

  47. R. Zimmermann and J. Lumin. 53, 187 (1992).

    Google Scholar 

  48. T. Kuhn and F. Rossi, Phys. Rev. B 46, 7496 (1992).

    Article  Google Scholar 

  49. T. Kuhn, E. Binder, F. Rossi, A. Lohner, K. Rick, P. Leisching, A. Leitensdorfer, P. Elsaesser, and W. Stolz, in Coherent Optical Interactions in Semiconductors, Vol. 330 of NATO Advanced Study Institute, Series B: Physics, edited by R.T. Phillips (Pleneum, New York) (1993).

    Google Scholar 

  50. F. Rossi, T. Kuhn, J. Schilp, and E. Schöll, in Proceedings of the 21st International Conference on Physics of Semiconductors, Bei**g, China, edited by P. Jiang and H. Zheng (World Scientific, Singapore), 165 (1992).

    Google Scholar 

  51. D.B. Tran Thoai, L. Bányai, E. Reitsamer, and H. Haug, Phys. Stat. Sol. (b) 188, 387 (1995).

    Article  Google Scholar 

  52. H. Haug, L. Bányai, J. Liebler, and T. Wicht, Phys. Stat. Sol. (b) 159, 309 (1990).

    Article  Google Scholar 

  53. R. Zimmermann, J. Wauer, and J. Lumin. 58, 271 (1994).

    Google Scholar 

  54. A.V. Kuznetsov, Phys. Rev. B 44, 13381 (1991).

    Article  Google Scholar 

  55. R. Brunetti, C. Jacoboni, and F. Rossi, Phys. Rev. B 39, 10781 (1989).

    Article  Google Scholar 

  56. N.G. van Kampen, Stochastic processes in physics and chemistry. (North-Holland, Amsterdam London Newe York Tokyo).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Axt, V.M., Mukamel, S. (1998). Influence of a Phonon Bath on Electronic Correlations and Optical Response in Molecular Aggregates. In: Moloney, J.V. (eds) Nonlinear Optical Materials. The IMA Volumes in Mathematics and its Applications, vol 101. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1714-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1714-5_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7253-3

  • Online ISBN: 978-1-4612-1714-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation