Abstract

Consider the problem where β > 0 and Ω = B R (0) ≔ x ∈ IRN; |x| < R. It is known ([AW]) that there is a positive number R o = R o (N,β) such that u exists globally if R < R o while for R> R o the solution u reaches zero in a finite time T (it quenches). The only point x o for which u(x o , t) → 0 as t 2192 T is x o = 0 (see [AK]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Acker & B. Kawohl, Remarks on quenching, Nonlinear Anal. TMA 13 (1989), 53–61.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Acker & W. Walter, The quenching problem for nonlinear partial differential equations, Springer Lecture Notes in Math. 564 (1976),1–12.

    Article  MathSciNet  Google Scholar 

  3. H. Amann, On the existence of positive solutions of nonlinear elliptic boundary value problems, Indiana Univ. Math. J. 21 (1971), 125–146.

    Article  MathSciNet  Google Scholar 

  4. H. Amann, Supersolutions, monotone iterations, and stability, J. Diff. Equ. 21 (1976), 363–377.

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Brézis, L.A. Peletier & D. Terman, A very singular solution of the heat equation with absorption, Arch. Rat. Mech. Anal. 95 (1986), 185–209.

    Article  MATH  Google Scholar 

  6. W. J. van den Broek & F. Verhulst, A generalized Emden-Fowler equation, Math. Meth. Appl. Sc. 4 (1982), 259–271.

    Article  MATH  Google Scholar 

  7. M. Fila & J. Hulshof, A note on the quenching rate, to appear in Proc. A. M. S.

    Google Scholar 

  8. M. Fila & B. Kawohl, Asymptotic analysis of quenching problems, to appear in Rocky Mountain J. of Math.

    Google Scholar 

  9. M. Fila & B. Kawohl, Is quenching in infinite time possible?, Quarterly of Appl. Math. 48(1990), 531–534.

    MathSciNet  MATH  Google Scholar 

  10. B. Gidas, W.-M. Ni & L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209–243.

    Article  MathSciNet  MATH  Google Scholar 

  11. Y. Giga & R.V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math. 38 (1985), 297–319.

    Article  MathSciNet  MATH  Google Scholar 

  12. R.J. Grundy, Similarity solutions of the nonlinear diffusion equation, Quarterly Appl. Math. 37 (1979), 259–280.

    MathSciNet  MATH  Google Scholar 

  13. J.S. Guo, On the quenching behavior of the solution of a semilinear parabolic equation, J. Math. Anal. Appl. 151(1990), 58–79.

    Article  MathSciNet  MATH  Google Scholar 

  14. J.S. Guo, On the semilinear elliptic equation Δw−1/2y∇ww-w -03B2= 0 in IR n, IMA preprint #531 (1989).

    Google Scholar 

  15. J. Hulshof, Similarity solutions of the porous medium equation with sign changes, J. Math. Anal. Appl. 156 (1991).

    Google Scholar 

  16. C.W. Jones, On reducible nonlinear differential equations occurring in mechanics, Proc. Roy. Soc. A 217 (1953), 327–343.

    Article  MATH  Google Scholar 

  17. D.D. Joseph & T.S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rat. Mech. Anal. 49 (1973), 241–269.

    MathSciNet  MATH  Google Scholar 

  18. H.A. Levine, The phenomenon of quenching: a survey, in: Trends in the Theory and Practice of Nonlinear Analysis, V. Lakshmikantham ed. North Holland (1985), 257–286.

    Google Scholar 

  19. H.A. Levine, Quenching, nonquenching and beyond quenching for solutions of some parabolic equations, Ann. Mat. Pura Appl. 155 (1989), 243–260.

    Article  MathSciNet  MATH  Google Scholar 

  20. H.A. Levine & J.T. Montgomery, The quenching of solutions of some nonlinear parabolic equations, SIAM J. Math. Anal. 11 (1980), 842–847.

    Article  MathSciNet  MATH  Google Scholar 

  21. D.H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J. 21 (1972), 979–1000.

    Article  MathSciNet  MATH  Google Scholar 

  22. D.H. Sattinger, Topics in Stability and Bifurcation Theory, Springer Lecture Notes (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fila, M., Hulshof, J., Quittner, P. (1992). The Quenching Problem on the N-dimensional Ball. In: Lloyd, N.G., Ni, W.M., Peletier, L.A., Serrin, J. (eds) Nonlinear Diffusion Equations and Their Equilibrium States, 3. Progress in Nonlinear Differential Equations and Their Applications, vol 7. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0393-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0393-3_14

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6741-6

  • Online ISBN: 978-1-4612-0393-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation