Transcutaneous Oxygen Tension: Principles and Applications

  • Chapter
Noninvasive Vascular Diagnosis

Abstract

Beginning in the early 1970s, it became clear that empiric means of assessing foot perfusion were not adequate due to lack of sensitivity and specificity. Compelling research led to the discovery of a number of different objective tools that could be used to assess the degree of foot ischemia. Among the tested modalities, transcutaneous oxygen tension proved to be invaluable in the evaluation of lower extremity ischemia. Design of the transcutaneous sensor made it possible to obtain very accurate measurements of oxygen (pO2) and carbon dioxide (pCO2) tension on the surface of the skin. This chapter will discuss the physiology of transcutaneous oxygen (tcpO2) measurements and demonstrate how these measurements can be used for the determination of amputation level. In addition, tcpO2 measurements will be shown to be essential for the prospective management of diabetic patients with foot ischemia as well as nondiabetic patients with chronic lower extremity ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baumbach P. Understanding transcutaneous PO2 and PCO2 measurements. Copenhagen: Radiometer A/S, 1986:1–54.

    Google Scholar 

  2. Steenfos HH, Baumbach P. Transcutaneous PO2 in peripheral vascular disease. Copenhagen: Radiometer A/S, 1986:1–18.

    Google Scholar 

  3. Moosa HH, Peitzman AB, Makaroun MS, Webster MW, Steed DL. Transcutaneous oxygen measurements in lower extremity ischemia: effects of position, oxygen inhalation, and arterial reconstruction. Surgery 1988;103:193–198.

    PubMed  CAS  Google Scholar 

  4. Häuser CJ, Appel P, Shoemaker WC. Pathophysiologic classification of peripheral vascular disease by positional changes in regional transcutaneous oxygen tension. Surgery 1984;95:689–693.

    PubMed  Google Scholar 

  5. Larsen JF, Jensen BV, Christensen KS, Egeblad K. Forefoot transcutaneous oxygen tension at different leg positions in patients with peripheral vascular disease. Eur J Vasc Surg 1990;4:185–189.

    Article  PubMed  CAS  Google Scholar 

  6. Burgess EM, et al. Segmental transcutaneous measurements of PO2 in patients requiring below the knee amputations for peripheral vascular insufficiency. J Bone Joint Surg Am 1982;64:378–392.

    PubMed  CAS  Google Scholar 

  7. Franzeck UK, et al. Transcutaneous PO2 measurement in health on peripheral arterial occlusive disease. Surgery 1982;91:156–163.

    PubMed  CAS  Google Scholar 

  8. Friedmann LW. The prosthesis: immediate or delayed fitting? Angiology 1972;23:513–524.

    Article  Google Scholar 

  9. Katsamouris A, et al. Transcutaneous oxygen tension in selection of amputation level. Am J Surg 1984;147:510–516.

    Article  PubMed  CAS  Google Scholar 

  10. Malone JM, et al. Prospective comparison of noninvasive techniques for amputation level selection. Am J Surg 1987;154: 179–184.

    Article  PubMed  CAS  Google Scholar 

  11. Ratliff DA, et al. Prediction of amputation healing: the role of transcutaneous PO2 assessment. Br J Surg 1984;71:219–222.

    Article  PubMed  CAS  Google Scholar 

  12. Matsen FA, et al. The relationship of transcutaneous PO2 and laser Doppler measurements in human model of local arterial insufficiency. Surg Gynecol Obstet 1984;159:418–422.

    PubMed  Google Scholar 

  13. Wyss CR, et al. Transcutaneous oxygen tension as a predictor of success after an amputation. J Bone Joint Surg Am 1988;70: 203–207.

    PubMed  CAS  Google Scholar 

  14. Christensen KS, Klarke M. Transcutaneous oxygen measurement in peripheral occlusive disease: an indicator of wound healing in leg amputation. J Bone Joint Surg Br 1986;68:423–426.

    PubMed  CAS  Google Scholar 

  15. Ballard JL, Malone JM. Amputation in the diabetic. In: Rutherford RB (ed) Seminars in vascular surgery. Philadelphia: WB Saunders, 1992:257–263.

    Google Scholar 

  16. Malone JM, Ballard JL. Amputation level determination techniques. In: Bernstein EF (ed) Vascular diagnosis. St. Louis: Mosby-Year Book, 1993:568–574.

    Google Scholar 

  17. Kim D, Orron DE. Techniques and complications of angiography. In: Kim D, Orron DE (eds) Peripheral vascular imaging and intervention. St. Louis: Mosby-Year Book, 1992:83–109.

    Google Scholar 

  18. Weisberg LS, Kurnik PB, Kurnik BRC. Risk of radiocontrast neuropathy in patients with and without diabetes mellitus. Kidney Int 1994;45:259–265.

    Article  PubMed  CAS  Google Scholar 

  19. Hauser CJ, Klein SR, Mehringer CM, Appel P, Shoemaker WC. Superiority of transcutaneous oximetry in noninvasive vascular diagnosis in patients with diabetes. Arch Surg 1984;119:690–694.

    Article  PubMed  CAS  Google Scholar 

  20. Hauser CJ, Klein SR, Mehringer CM, et al. Assessment of perfusion in the diabetic foot by regional transcutaneous oximetry. Diabetes 1984;33:527–531.

    Article  PubMed  CAS  Google Scholar 

  21. Modesti PA, Boddi M, Poggesi L, et al. Transcutaneous oximetry in evaluation of the initial peripheral artery disease in diabetics. Angiology 1987;457–461.

    Google Scholar 

  22. Hauser CJ. Tissue salvage by map** of skin surface transcutaneous oxygen tension index. Arch Surg 1987;122:1128–1130.

    Article  PubMed  CAS  Google Scholar 

  23. Fronek A. Clinical experience with transcutaneous pO2 and pCO2 measurements. In: Bernstein EF (ed) Vascular diagnosis. St. Louis: Mosby-Year Book, 1993:620–625.

    Google Scholar 

  24. Lalka SG, Malone JM, Anderson GG, Hagaman RM, Mclntyre KE, Bernhard VM. Transcutaneous oxygen and carbon dioxide pressure monitoring to determine severity of limb ischemia and to predict surgical outcome. J Vasc Surg 1988;7:507–514.

    PubMed  CAS  Google Scholar 

  25. Ballard JL, Eke CC, Bunt TJ, Killeen JD. A prospective evaluation of transcutaneous oxygen (TcPO2) measurements in the management of diabetic foot problems. J Vasc Surg 1995;22:485–492.

    Article  PubMed  CAS  Google Scholar 

  26. Padberg FT, Back TL, Thompson PN, Hobson RW. Transcutaneous oxygen (TcPO2) estimates probability of healing in the ischemic extremity. J Surg Res 1996;60:365–369.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag London

About this chapter

Cite this chapter

Ballard, J.L., Bianchi, C. (2000). Transcutaneous Oxygen Tension: Principles and Applications. In: AbuRahma, A.F., Bergan, J.J. (eds) Noninvasive Vascular Diagnosis. Springer, London. https://doi.org/10.1007/978-1-4471-3837-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3837-2_30

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3839-6

  • Online ISBN: 978-1-4471-3837-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation