The Monocyte and Endothelial Injury in Atherogenesis

  • Chapter
Cellular and Molecular Biology of Atherosclerosis

Part of the book series: Argenteuil Symposia ((ARGENTEUIL))

  • 46 Accesses

Abstract

The macrophage foam cell has been recognized as a hallmark of the atherosclerotic plaque for over a century. However, the potential importance of the blood monocyte in atherosclerosis was first pointed out by Leary as late as 1941. Poole and Florey (1958) later discussed the blood as a source of lesion foam cells in hypercholesterolemic rabbits, and demonstrated a macrophage traversing the endothelium. Still and O’Neal (1962) were the first to demonstrate, ultrastructurally, the adherence to and penetration of the endothelium by monocytes in hypercholesterolemic animals, a finding subsequently described by numerous others under a wide variety of conditions (Jerome and Lewis 1984, 1985; Joris et al. 1983; Gerrity 1981a, 1981b). However, until the last decade, only Kim et al. (1966) attempted to establish the circulating monocyte/macrophage as a major factor in atherogenesis, and it was unclear whether lipid accumulation in lesion macrophage foam cells occurred due to sequestration of blood lipophages in the arterial wall, or by the accumulation of intimal lipid by monocytes which had previously traversed the endothelium. Furthermore, the “response to injury” hypothesis in its initial format (Ross and Glomset 1976) did not define any potential role of the blood monocyte in lesion initiation, and the relationships, if any, between endothelial injury and monocyte penetration of the intima remained unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Averill LE, Meagher RC, Gerrity RG (1989) Enhanced monocyte progenitor cell proliferation in bone marrow of hyperlipemic swine. Am J Pathol 135:369

    PubMed  CAS  Google Scholar 

  • Bar-Shavit R, Kahn A, Fenton JW, Wilner GD (1983) Chemotactic responses of monocytes to thrombin. J Cell Biol 96:282

    Article  PubMed  CAS  Google Scholar 

  • Bell FP, Adamson IL, Schwartz CJ (1974a) Aortic endothelial permeability to albumin: focal and regional patterns of uptake and transmural distribution of 131I-albumin in the young pig. Exp Mol Pathol 20:57

    Article  PubMed  CAS  Google Scholar 

  • Bell FP, Gallus AS, Schwartz CJ (1974b) Focal and regional patterns of uptake and the transmural distribution of 131I-fibrinogen in the pig aorta in vivo. Exp Mol Pathol 20:281

    Article  PubMed  CAS  Google Scholar 

  • Berliner JA, Territo M, Almada L, Carter A, Shafonsky E, Fogelman AM (1986) Monocyte chemotactic factor produced by large vessel endothelial cells in vitro. Arteriosclerosis 6:254

    Article  PubMed  CAS  Google Scholar 

  • Caplan BA, Gerrity RG, Schwartz CJ (1974) Endothelial cell morphology in focal areas of in vivo Evans Blue uptake in the young pig aorta. I. Quantitative light microscope findings. Exp Mol Pathol 21:102

    Article  PubMed  CAS  Google Scholar 

  • Cornhill JF (1986) Topographic probability map** of atherosclerosis. Report 763813/715703, Ohio State University Research Foundation (NHLBI, N01-HV-38019)

    Google Scholar 

  • Cornhill JF, Barrett WA, Herderick EE, Mahley RW, Fry DL (1985) Topographic study of sudanophilic lesions in cholesterol-fed minipigs by image analysis. Arteriosclerosis 5:415

    Article  PubMed  CAS  Google Scholar 

  • Cotran RS, Pober JS (1990) Cytokine-endothelial interactions in inflammation, immunity, and vascular injury. J Am Soc Nephrol 1:225

    PubMed  CAS  Google Scholar 

  • Cushing SD, Berliner JA, Valente AJ, Territo MC, Navab M, Parhami F, Gerrity RG, Schwartz CJ, Fogelman AM (1990) Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci USA 87:5134

    Article  PubMed  CAS  Google Scholar 

  • Daoud AS, Jannolych J, Augustyn JM, Fritz KE (1981) Sequential morphologic studies of regression of advanced atherosclerosis. Arch Pathol Lab Med 105:233

    PubMed  CAS  Google Scholar 

  • Daoud AS, Fritz KE, Jannolych J, Frank AS (1985) Role of macrophages in regression of atherosclerosis. Ann NY Acad Sci 454:101

    Article  PubMed  CAS  Google Scholar 

  • Deuel TF, Senior RM, Haung JS, Griffin GL (1982) Chemotaxis of monocytes and neutrophils to platelet-derived growth factor. J Clin Invest 69:1046

    Article  PubMed  CAS  Google Scholar 

  • Faggiotto A, Ross R, Harker L (1984) Studies of hypercholesterolemia in the nonhuman primate. I. Changes that lead to fatty streak formation. Arteriosclerosis 4:323

    Article  PubMed  CAS  Google Scholar 

  • Feldman DL, Hoff HF, Gerrity RG (1984) Immunohistochemical localization of apoprotein B in aortas from hyperlipemic swine: preferential accumulation in lesion-prone areas. Arch Pathol Lab Med 108:817

    PubMed  CAS  Google Scholar 

  • Gallin JI, Kaplan AP (1974) Mononuclear cell chemotactic activity of kallikrein and plasminogen activator and inhibition by CI inhibitor and a-macroglobulin. J Immunol 129:1612

    Google Scholar 

  • Gerrity RG (1981a) The role of the monocyte in atherogenesis. I. Transition of blood-borne monocytes into foam cells in fatty lesions. Am J Pathol 102:181

    Google Scholar 

  • Gerrity RG (1981b) The role of the monocyte in atherogenesis. II. Migration of foam cells from atherosclerotic lesions. Am J Pathol 103:191

    PubMed  CAS  Google Scholar 

  • Gerrity RG (1990) Arterial endothelial structure and permeability as it relates to susceptibility to atherogenesis. In: Glagov S, Newman III WP, Schaffer SA (eds) Pathobiology of the human atherosclerotic plaque. Springer-Verlag, New York, pp 13–45

    Chapter  Google Scholar 

  • Gerrity RG, Naito KH (1980) Alteration of endothelial cell surface morphology after experimental aortic coarctation. Artery 8:267

    PubMed  CAS  Google Scholar 

  • Gerrity RG, Schwartz CJ (1977) Structural correlates of arterial endothelial permability in the Evans Blue model. In: Sinzinger H, Auerswald WA, Jellinek H, Feigl W (eds) Prog Biochem Pharmacol, S. Karger, Basel, 13:134–137

    Google Scholar 

  • Gerrity RG, Richardson M, Bell FP, Somer JB, Schwartz CJ (1977) Endothelial cell morphology in areas of in vivo Evans Blue uptake in the young pig aorta. IL Ultrastructure of the intima in areas of differing permeability to proteins. Am J Pathol 89:313

    PubMed  CAS  Google Scholar 

  • Gerrity RG, Naito HK, Richardson M, Schwartz CJ (1979) Dietary-induced atherogenesis in swine. I. Morphology of the intima in pre-lesion stages. Am J Pathol 95:775

    PubMed  CAS  Google Scholar 

  • Gerrity RG, Goss JA, Soby L (1985) Control of monocyte recruitment by chemotactic factor(s) in lesion-prone areas of swine aorta. Arteriosclerosis 5:55

    Article  PubMed  CAS  Google Scholar 

  • Graves DT, Jiang YL, Williamson MJ, Valente AJ (1989) Identification of monocyte chemotactic activity produced by malignant cells. Science 245:1490

    Article  PubMed  CAS  Google Scholar 

  • Hoff HF, Jackson RI, Mao JT, Gotto AM (1974) Localization of low density lipoproteins in arterial lesions from normolipemics employing a purified fluorescent labeled antibody. Biochim Biophys Acta 351:407

    PubMed  CAS  Google Scholar 

  • Hoff HF, Heideman CI, Noon JP, Meyer JS (1975a) Localization of apolipoproteins in human carotid artery plaques. Stroke 6:531

    Article  PubMed  CAS  Google Scholar 

  • Hoff HF, Heideman CI, Gaubatz JW (1975b) Apo-low density lipoprotein localization in intracranial and extracranial atherosclerotic lesions from human normolipoproteinemics and hyperlipoproteinemics. Arch Neurol 32:600

    PubMed  CAS  Google Scholar 

  • Hoff HF, Lie JT, Titus JL, Jackson RL, DeBakey ME, Bayardo R, Gotto AM (1975c) Lipoproteins in atherosclerotic lesions: localization by immunofluorescence of apo-low density lipoproteins in human atherosclerotic arteries from normal and hyperlipoproteinemics. Arch Pathol 99:253

    PubMed  CAS  Google Scholar 

  • Hoff HF, Ruggles BM, Bond MG (1980) A technique for localizing LDL by immunofluorescence in formalin-fixed and paraffin-embedded atherosclerotic lesions. Artery 6:328

    PubMed  CAS  Google Scholar 

  • Hoff HF, Gerrity RG, Naito HK, Dusek D (1983) Quantitation of apoliopoprotein B in aortas of hypercholesterolemic swine. Lab Invest 48:492

    PubMed  CAS  Google Scholar 

  • Hunninghake GW, Davidson JM, Rennard S, Szapiel S, Gadek JR, Crystal RG (1981) Elastin fragments attract macrophage precursors to diseased sites in pulmonary emphysema. Science 212:925

    Article  PubMed  CAS  Google Scholar 

  • Jauchem JR, Lopez M, Sprague EA, Schwartz CJ (1982) Mononuclear cell chemoattractant activity from cultured arterial smooth muscle cells. Exp Mol Pathol 37:166

    Article  PubMed  CAS  Google Scholar 

  • Jerome WG, Lewis JC (1984) Early atherogenesis in white carneau pigeons. I. Leukocyte margination and endothelial alterations at the celiac bifurcation. Am J Pathol 116:56

    PubMed  CAS  Google Scholar 

  • Jerome WG, Lewis JC (1985) Early atherogenesis in white carneau pigeons. II. Ultrastructural and cytochemical observations. Am J Pathol 119:210

    PubMed  CAS  Google Scholar 

  • Joris I, Nunnari T, Krolikowski JJ, Majno FJ (1983) Studies on the pathogenesis of atherosclerosis. I. Adhesion and emigration of mononuclear cells in the aorta of hypercholesterolemic rats. Am J Pathol 113:341

    PubMed  CAS  Google Scholar 

  • Kim HS, Suzuki M, O’Neal RM (1966) The lipophage in hyperlipemic rats: an electron microscopic study. Exp Mol Pathol 5:1

    Article  Google Scholar 

  • Leary T (1941) The genesis of atherosclerosis. Arch Pathol 32:507

    CAS  Google Scholar 

  • McGill HC Jr (1968a) Persistent problems in the pathogenesis of atherosclerosis. Atherosclerosis 4:443

    Google Scholar 

  • McGill HC Jr (1968b) The geographic pathology of atherosclerosis. Williams and Wilkins, Baltimore

    Google Scholar 

  • Metcalf D (1977) Neutrophil and macrophage colony formation by normal cells. Recent Results Cancer Res 61:56

    Google Scholar 

  • Minick CG, Stemmerman MB, Insul W (1979) Role of endothelium and hypercholesterolemia in intimal thickening and lipid accumulation. Am J Pathol 95:131

    PubMed  CAS  Google Scholar 

  • Mitchell JRA, Schwartz CJ (1965) Arterial disease. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Norris DA, Clark RAF, Swigart LM, Huff JC, Weston WL, Howell SE (1982) Fibronectin fragment(s) are chemotactic for human peripheral blood monocytes. J Immunol 129:1612

    PubMed  CAS  Google Scholar 

  • Pober JS, Cotran RS (1990) Cytokines and endothelial cell biology. Physiol Rev 70:427

    PubMed  CAS  Google Scholar 

  • Poole JCF, Florey HW (1958) Changes in the endothelium of the aorta and behaviour of macrophages in experimental atheroma of rabbits. J Pathol Bacteriol 75:245

    Article  PubMed  CAS  Google Scholar 

  • Rajavashisth TB, Andalibi A, Territo MC, Berliner JA, Navab M, Fogelman AM, Lusis AJ (1990) Nature (Lond) 344:254

    Article  CAS  Google Scholar 

  • Reidy MA (1990) In vivo endothelial injury. In: Subbiah MTR (ed) Atherosclerosis: a pediatric perspective. CRC Press, Boca Raton, Florida, pp 31–42

    Google Scholar 

  • Repin VS, Dolgov W, Zaikina OE, Novikov ID, Antonov AS, Nikolaeva MS, Smirnov VN (1984) Heterogeneity of endothelium in human aorta: a quantitative analysis by scanning electron microscopy. Atherosclerosis 50:35

    Article  PubMed  CAS  Google Scholar 

  • Ross R, Glomset JA (1976) The pathogenesis of atherosclerosis. N Engl J Med 295:369

    Article  PubMed  CAS  Google Scholar 

  • Simionescu N, Simionescu M, Palade GE (1973) Permeability of muscle capillaries to exogenous myoglobin. J Cell Biol 57:424

    Article  PubMed  CAS  Google Scholar 

  • Simionescu N, Simionescu M, Palade GE (1975) Permeability of muscle capillaries to small heme-peptides: evidence for the existence of patent transendothelial channels. J Cell Biol 64:586

    Article  PubMed  CAS  Google Scholar 

  • Snyderman R, Friedman EJ (1980) Demonstration of a chemotactic factor receptor on macrophages. J Immunol 124:2754

    PubMed  CAS  Google Scholar 

  • Snyderman R, Shin HS, Hausman MS (1971) A chemotactic factor for mononuclear leukocytes. Proc Soc Exp Biol Med 138:287

    Google Scholar 

  • Somer JB, Schwartz CJ (1972) Focal [3H]-cholesterol uptake in the pig aorta. II. Distribution of [3H]-cholesterol across the aortic wall in areas of high and low uptake in vivo. Atherosclerosis 16:377

    Article  PubMed  CAS  Google Scholar 

  • Stary HC (1985) Evolution and progression of atherosclerosis in the coronary arteries of children and adults. In: Bates SR, Gangloff EC (eds) Atherosclerosis and aging. Springer-Verlag, Heidelberg, p 20

    Google Scholar 

  • Still WJS, O’Neal RM (1962) Electron microscopic study of experimental atherosclerosis in the rat. Am J Pathol 40:21

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag London Limited

About this chapter

Cite this chapter

Gerrity, R.G. (1992). The Monocyte and Endothelial Injury in Atherogenesis. In: Gotto, A.M. (eds) Cellular and Molecular Biology of Atherosclerosis. Argenteuil Symposia. Springer, London. https://doi.org/10.1007/978-1-4471-1909-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1909-8_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1911-1

  • Online ISBN: 978-1-4471-1909-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation