Basic Fibroblast Growth Factor in Vascular Development and Atherogenesis

  • Chapter
Cellular and Molecular Biology of Atherosclerosis

Part of the book series: Argenteuil Symposia ((ARGENTEUIL))

  • 46 Accesses

Abstract

Numerous laboratories are currently investigating the potential roles of polypeptide growth factors and oncogenes in atherosclerosis and related pathologies, such as restenosis after angioplasty and intimal proliferation in vessels of transplanted organs. Clearly, the rationale is that the development of these lesions involves the migration and proliferation of smooth muscle cells and monocyte-macrophages, and secretion of large amounts of extracellular proteoglycans and collagens (Ross et al. 1990a; Gerrity 1981; Gown et al. 1986; Wight 1989; Libby and Hansson 1991; Clowes and Schwartz 1985; McBride et al. 1988; Clowes et al. 1983; Manderson et al. 1989; Bulkley and Huchins 1977; Waller et al. 1984; Billingham 1989), well-known actions of growth factors, at least in vitro (Ross et al. 1990a; Gospodarowicz 1989; Baird and Böhlen 1990; Sporn and Roberts 1990). It is clear that most of the major classes of growth factors can by synthesized by activated macrophages (Ross et al. 1990a; Libby and Hansson 1991) and endothelial cells (Vlodavsky et al. 1987; Hannan et al. 1988; Speir et al. 1991; Baird and Ling 1987; Mansson et al. 1990; Gajdusek et al. 1980; Collins et al. 1987), and an increasing number of growth factors are being identified in vascular smooth muscle cells (Ross et al. 1990a; Libby and Hansson 1991; Baird and Ling 1987; Mansson et al. 1990; Weich et al. 1990; Gospodarowicz et al. 1988; Winkles et al. 1987; Cercek et al. 1990; Naftilan et al. 1989). Platelets have long been known to contain platelet-derived growth factors (PDGFs) (Ross et al. 1990a) and transforming growth factor-β (Sporn and Roberts 1990; Casscells et al. 1990a), and other mitogens such as serotonin (Corson et al. 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
GBP 9.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ando J, Nomura H, Kamiya S (1987) The effect of fluid shear stress on the migration and proliferation of cultured smooth muscle cell. Microvasc Res 33:62–70

    PubMed  CAS  Google Scholar 

  • Austin GE, Ratliff NB, Hollman J, Tabei S, Phillips DF (1985) intimal proliferation of smooth muscle cells as an explanation for recurrent coronary artery stenosis after percutaneous transluminal coronary angioplasty. J Am Coll Cardiol 6:369–375

    PubMed  CAS  Google Scholar 

  • Babaev VR, Bobryshev YV, Stenina OV, Tararak EM, Gabbiani G (1990) Heterogeneity of smooth muscle cells in atheromatous plaque of human aorta. Am J Pathol 136:1031–1042

    PubMed  CAS  Google Scholar 

  • Baird A, Bohlen P (1990) Fibroblast growth factors. In: Spora MB, Roberts AB (eds) Handbook of experimental pharmacology. Peptide growth factors and their receptors. Springer-Verlag, Berlin, pp 369–418

    Google Scholar 

  • Baird A, Ling N (1987) Fibroblast growth factors are present in the extracellular matrix produced by endothelial cells in vitro: implications for a role of heparinase-like enzymes in the neovascular response. Biochem Biophys Res Commun 142:428–435

    PubMed  CAS  Google Scholar 

  • Banai S, Jaklitsch M, Casscells W, Shou M, Shrivastav S, Correa R, Epstein SE, Unger EF (1991) Effects of acidic fibroblast growth factor on normal and ischemic myocardium. Circ Res (accepted for publication)

    Google Scholar 

  • Barrett TB, Benditt EP (1988) Platelet-derived growth factor gene expression in human atherosclerotic plaque and normal artery wall. Proc Natl Acad Sci USA 85:2810–2814

    PubMed  CAS  Google Scholar 

  • Bar-Shavit R, Benezra M, Eldort A, Hy-Am H, Fenton JW II, Wilners GD, Vlodavsky I (1990) Thrombin immobilized to extracellular matrix is a potent mitogen for vascular smooth muscle cells: nonenzymatic mode of action. Cell Regulation 1:453–463

    PubMed  CAS  Google Scholar 

  • Bell L, Madri JA (1989) Effect of platelet factors on migration of cultured bovine aortic endothelial and smooth muscle cells. Circ Res 65:1057–1065

    PubMed  CAS  Google Scholar 

  • Benditt EP, Benditt JM (1973) Evidence for a monoclonal origin of human atherosclerosis plaques. Proc Natl Acad Sci USA 70:1753–1756

    PubMed  CAS  Google Scholar 

  • Billingham ME (1989) Graft coronary disease: the lesion and the patient. Transplant Proc 21:3665–3666

    PubMed  CAS  Google Scholar 

  • Blaes N, Boissel JP (1983) Growth-stimulating effect of catecholamines on rat aortic smooth muscle cells in culture. J Cell Physiol 116:167–175

    PubMed  CAS  Google Scholar 

  • Buckley A, Davidson JM, Kameroth CD, Wolt TB, Woodward SC (1985) Sustained release of epidermal growth factor accelerates wound repair. Proc Natl Acad Sci USA 82:7340–7344

    PubMed  CAS  Google Scholar 

  • Bulkley BH, Hutchins GM (1977) Accelerated “atherosclerosis”: a morphological study of 97 saphenous vein coronary artery bypass grafts. Circulation 50:163–169

    Google Scholar 

  • Burgess WH, Maciag T (1989) The heparin-binding (fibroblast) growth factor family of proteins. Annu Rev Biochem 58:575–606

    PubMed  CAS  Google Scholar 

  • Casscells W (1991) The bFGF system is involved in vascular development and can be manipulated to inhibit smooth muscle proliferation. J Cell Biochem 15C:98

    Google Scholar 

  • Casscells W, Bazoberry F, Speir E, Thompson N, Flanders K, Kondaiah P, Ferrans V, Epstein SE, Spora M (1990a) Transforming growth factor B1 in normal heart and in myocardial infarction. Ann NY Acad Sci 593:148–160

    PubMed  CAS  Google Scholar 

  • Casscells W, Kimura H, Sanchez JA, Yu Z-X, Ferrans VJ (1990b) Immunohistochemical study of fibronectin in experimental myocardial infarction. Am J Pathol 137:801–810

    PubMed  CAS  Google Scholar 

  • Casscells W, Speir E, Sasse J, Klagsbrun M, Allen P, Lee M, Calvo B, Chiba M, Haggroth L, Folkman J, Epstein SE (1990c) Isolation, characterization and localization of heparin-binding growth factors in the heart. J Clin Invest 85:433–441

    PubMed  CAS  Google Scholar 

  • Castellot J, Cochran D, Karaovsky M (1973) Effect of heparin on vascular smooth muscle cells. I. Cell metabolism. J Cell Physiol 124:21–38

    Google Scholar 

  • Cercek B, Fishbein MC, Forrester JS, Heifant RH, Fagin JA (1990) Induction of insulin-like growth factor 2 messenger RNA in rat aorta after balloon denudation. Circ Res 66:1755–1760

    PubMed  CAS  Google Scholar 

  • Chen J-K, Hoshi H, McKeehan WL (1988) Heparin-binding growth factor type one and platelet-derived growth factor are required from the optimal expression of cell surface low density lipoprotein receptor binding activity in human adult arterial smooth muscle cells. In Vitro Cell Dev Biol 24:199–204

    PubMed  Google Scholar 

  • Chesebro JH, Clements LP, Fuster V, Elveback LR, Smith HC et al. (1982) A platelet-inhibitor drug trial in coronary-artery bypass operations: benefit of perioperative dipyridamole and aspirin therapy on early postoperative vein-graft patency. N Engl J Med 307:73–78

    PubMed  CAS  Google Scholar 

  • Clowes AW, Clowes MM (1989) Inhibition of smooth muscle cell proliferation by heparin molecules. Transplant Proc 21:3700–3701

    PubMed  CAS  Google Scholar 

  • Clowes AW, Karaovsky MJ (1977) Failure of certian antiplatelet drugs to affect myointimal thickening following arterial endothelial injury in the rat. Lab Invest 36:452–464

    PubMed  CAS  Google Scholar 

  • Clowes AW, Schwartz SM (1985) Significance of quiescent smooth muscle migration in the injured rat carotid artery. Circ Res 56:139–145

    PubMed  CAS  Google Scholar 

  • Clowes AW, Reidy MA, Clowes MM (1983) Kinetics of cellular proliferation after arterial injury. I. Smooth muscle growth in the absence of endothelium. Lab Invest 49:327–333

    PubMed  CAS  Google Scholar 

  • Clowes AW, Clowes MM, Fingerle J, Reidy MA (1989) Kinetics of cellular proliferation after arterial injury. V. Role of acute distension in the induction of smooth muscle proliferation. Lab Invest 60:360–364

    PubMed  CAS  Google Scholar 

  • Collins T, Pober JS, Gimbrone MA Jr, Betsholtz C, Westermark B, Heldin CH (1987) Cultured human endothelial cells express platelet-derived growth factor A chain. Am J Pathol 126:7–12

    PubMed  CAS  Google Scholar 

  • Corson M, Alexander RW, Berk BC (1991) THe phospholipase C coupled serotonin receptor mediating rat aortic smooth muscle cell growth is the 5-HT2 sub-type. J Cell Biochem 15C:123

    Google Scholar 

  • Dartsch PC, Voisard R, Bauriedel G, Hofling B, Betz E (1990) Growth characteristics and cytoskeletal organization of cultured smooth muscle cells from human primary stenosing and restenosing lesions. Arteriosclerosis 10: 62–75

    PubMed  CAS  Google Scholar 

  • Davidson JM, Klagsbrun M, Hill KE, Buckley A, Sullivan R, Brewer PS, Woodward SC (1985) Accelerated wound repair, cell proliferation and collagen accumulation are produced by a cartilage-derived growth factor. J Cell Biol 100:1219–1227

    PubMed  CAS  Google Scholar 

  • Davies PF, Kemuzzi A, Gordon EJ, Dewey CF Jr, Gimbrone MA Jr (1986) Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc Natl Acad Sci USA 83:2114–2117

    PubMed  CAS  Google Scholar 

  • Edelman ER, Adams DH, Karnovsky MJ (1990) Effect of controlled adventitial heparin delivery on smooth muscle cell proliferation following endothelial injury. Proc Natl Acad Sci USA 87:3773–3777

    PubMed  CAS  Google Scholar 

  • Fingerle J, Johnson R, Clowes AW, Majesky MW, Reidy MA (1989) Role of platelets in smooth muscle cell proliferation and migration after vascular injury in rat carotid artery. Proc Natl Acad Sci USA 86:8412–8416

    PubMed  CAS  Google Scholar 

  • Flugelman MY, Correa R, Yu Z-X, Keren G, Leon MB, Satler LF, Kent KM, Casscells W, Epstein SE (1991) Fibroblast growth factors are expressed in coronary lesions of patients with unstable angina pectoris and those who have post-angioplasty restenosis. J Am Coll Cardiol 17:73A

    Google Scholar 

  • Folkman J, Klagsbrun M (1987) Angiogenic factors. Science 235:442–447

    PubMed  CAS  Google Scholar 

  • Fox PL, DiCorleto PE (1984) Regulation of production of a platelet-derived growth factor-like protein by cultured bovine aortic endothelial cells. J Cell Physiol 121:298–308

    PubMed  CAS  Google Scholar 

  • Gajdusek C, DiCorleto PE, Ross R, Schwartz SM (1980) An endothelial cell-derived growth factor. J Cell Biol 85:467–472

    PubMed  CAS  Google Scholar 

  • Gajdusek C, Carbon S, Ross R, Nawroth P, Stern D (1986) Activation of coagulation releases endothelial cell mitogens. J Cell Biol 103:419–428

    PubMed  CAS  Google Scholar 

  • Geisterfer AA, Peach MJ, Owens GK (1988) Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res 62:749–756

    PubMed  CAS  Google Scholar 

  • Gerrity RG (1981) The role of the monocyte in atherogenesis. 1. Transition of blood-borne monocytes into foam cells in fatty lesions. Am J Pathol 103:181–190

    PubMed  CAS  Google Scholar 

  • Gimbrone MA Jr, Bevilacqua MP, Cybulsky MI (1990) Endothelial-dependent mechanisms of leukocyte adhesion in inflammation and atherosclerosis. Ann NY Acad Sci 598:77–85

    PubMed  Google Scholar 

  • Goodman LV, Majack RA (1989) Vascular smooth muscle cells express distinct transforming growth factor-β receptor phenotypes as a function of cell density in culture. J Biol Chem 264:5241–5244

    PubMed  CAS  Google Scholar 

  • Gospodarowicz D (1989) Fibroblast growth factor. Crit Rev Oncogen 1:1–26

    CAS  Google Scholar 

  • Gospodarowicz D, Hirabayashi K, Giguere L, Tauber JP (1981) Factors controlling the proliferative rate, final cell density and life span of bovine vascular smooth muscle cells in culture. J Cell Biol 89:568–578

    PubMed  CAS  Google Scholar 

  • Gospodarowicz D, Ferrara N, Haaparanta T, Neufeld G (1988) Basic fibroblast growth factor: expression in cultured bovine vascular smooth muscle cells. Eur J Cell Biol 46:144–151

    PubMed  CAS  Google Scholar 

  • Gown AM, Tsukada T, Ross R (1986) Human atherosclerosis: immunocytochemical analysis of the cellular composition of human atherosclerotic lesions. Am J Pathol 125:191–207

    PubMed  CAS  Google Scholar 

  • Gravanis MB, Roubin GS (1989) Histopathologic phenomena at the site of percutaneous transluminal coronary angioplasty: the problem of restenosis. Hum Pathol 20:477–485

    PubMed  CAS  Google Scholar 

  • Greenhalgh DG, Sprugel KH, Murray MJ, Ross R (1990) PDGF and FGF stimulate wound healing in the genetically diabetic mouse. Am J Pathol 136:1235–1246

    PubMed  CAS  Google Scholar 

  • Grotendorst GR, Chang T, Seppa HEJ, Kleinman HK, Martin GR (1982) Platelet-derived growth factor is a chemoattractant for vascular smooth muscle cells. J Cell Physiol 113:261–266

    PubMed  CAS  Google Scholar 

  • Grotendorst GR, Martin GR, Pancev D, Sodek J, Harvey AK (1985) Stimulation of granulation tissue formation by platelet-derived growth factor in normal and diabetic rats. J Clin Invest 76:2323–2329

    PubMed  CAS  Google Scholar 

  • Guyton JR, Karnovsky MJ (1979) Smooth muscle cell proliferation in the occluded rat carotid artery: lack of requirement for luminal platelets. Am J Pathol 94:585–602

    PubMed  CAS  Google Scholar 

  • Hannan RL, Kourembana S, Flanders KC, Rogel S, Roberts AB, Faller DV, Klagsbrun M (1988) Endothelial cells synthesize basic fibroblast growth factor and transforming growth factor beta. Growth Factors 1:1–17

    Google Scholar 

  • Harker LA (1986) Clinical trials evaluating platelet-modifying drugs in patients with atherosclerotic cardiovascular disease and thrombosis. Circulation 2:206–223

    Google Scholar 

  • Haudenschild CC, Grunwald J (1985) Proliferative heterogeneity of vascular smooth muscle cells and its alteration by injury. Exp Cell Res 157:364–370

    PubMed  CAS  Google Scholar 

  • Hoshi H, Kan M, Chen J-K, McKeehan W (1988) Comparative endocrinology-paracrinology-auto-crinology of human adult large vessel endothelial and smooth muscle cells. In Vitro Cell Dev Biol 24:309–320

    PubMed  CAS  Google Scholar 

  • Ingerman-Wojenski CM, Silver MJ (1988) Model system to study interaction of platelets with damaged arterial wall. II. Inhibition of smooth muscle cell proliferation by dipyridamole and AH-P719. Exp Mol Path 48:116–134

    CAS  Google Scholar 

  • Ip JH, Fuster V, Badimon L, Badimon J, Taubman MB, Chesebro JH (1990) Syndromes of accelerated atherosclerosis: role of vascular injury and smooth muscle cell proliferation. J Am Coll Cardiol 15:1667–1687

    PubMed  CAS  Google Scholar 

  • Ives HE, Mai Q (1991) Effects of cyclic stretch on growth, ion transport and gene expression in vascular smooth muscle cells. J Cell Biochem 15C:124

    Google Scholar 

  • Johnson DE, Hinohara T, Selmon MR, Braden LJ, Simpson JB (1990) Primary peripheral arterial stenosis and restenosis excised by transluminal atherectomy: a histopathologic study. J Am Coll Cardiol 15:419–425

    PubMed  CAS  Google Scholar 

  • Klagsbrun M, Edelman ER (1989) Biological and biochemical properties of fibroblast growth factor: implications for the pathogenesis of atherosclerosis. Atherosclerosis 9:269–278

    CAS  Google Scholar 

  • Ku DN, Giddens DP, Sarins CK, Glagov S (1985) Pulsatile flow and atherosclerosis in human carotid bifurcation: positive correlation between plaque location and low and oscillatory shear stress. Arteriosclerosis 5:292–302

    Google Scholar 

  • Langille BL, Bendeck MP, Kelley FW (1989) Adaptations of carotid arteries of young and mature rabbit to reduced carotid blood flow. Am J Physiol 256:H931–H939

    PubMed  CAS  Google Scholar 

  • Lappi DA, Martineau D, Baird A (1989) Biological and chemical characterization of basic FGF-saporin mitotoxin. Biochem Biophys Res Commun 160:917–923

    PubMed  CAS  Google Scholar 

  • La Rochelle WJ, Giese N, May-Siroff M, Robbins KC, Aaronson SA (1990) Molecular localization of the transforming and secretory properties of PDGF A and PDGF B. Science 248:1541–1544

    Google Scholar 

  • Libby P, Hansson GK (1991) Involvement of the immune system in human atherogenesis. Lab Invest 64:5–15

    PubMed  CAS  Google Scholar 

  • Libby P, Warner SJC, Salomon RN, Birinyi LK (1988) Production of platelet derived growth factor-like mitogen by smooth muscle cells from human atheroma. N Engl J Med 318:1493–1498

    PubMed  CAS  Google Scholar 

  • Liu MW, Roubin GS, King SB (1989) Restenosis after coronary angioplasty: potential biologic determinants and role of intimal hyperplasia. Circulation 79:1374–1378

    PubMed  CAS  Google Scholar 

  • Manderson JA, Mosse PR, Safatrom JA, Young SB, Campbell GR (1989) Balloon catheter injury to rabbit carotid artery. I. Changes in smooth muscle phenotype. Arteriosclerosis 9:289–298

    PubMed  CAS  Google Scholar 

  • Mansson PE, Marlak M, Sawada H, Kan M, McKeehan WL (1990) Heparin-binding (fibroblast) growth factors type one and two genes are co-expressed in proliferating normal human vascular endothelial and smooth muscle cells in culture. In Vitro Cell Dev Biol 26:209–212

    PubMed  CAS  Google Scholar 

  • McBride W, Lange RA, Hillis DL (1988) Restenosis after successful coronary angioplasty: pathophysiology and prevention. N Engl J Med 318:1734–1737

    PubMed  CAS  Google Scholar 

  • McGee GS, Davidson JM, Buckley A, Sommer A, Woodward SC, Aquino AM, Barbour R, Demetriou AA (1988) Recombinant basic fibroblast growth factor accelerates wound healing. J Surg Res 45:145–153

    PubMed  CAS  Google Scholar 

  • Mclntire LV, Hamond SL, Sharefkin JB, Eskin SG (1991) Regulation of gene expression in endothelial cells exposed to laminar shear stress. J Cell Biochem 15C:136

    Google Scholar 

  • Merwin JR, Newman W, Beale LD, Tucker A, Madri J (1991) Vascular cells respond differently to transforming growth factors beta 1 and beta 2 in vitro. Am J Pathol 138:37–51

    PubMed  CAS  Google Scholar 

  • Minick CR, Fabricant CG, Fabricant J, Litrenta MM (1979) Atheroarteriosclerosis induced by infection with a herpes virus. Am J Pathol 96:673–684

    PubMed  CAS  Google Scholar 

  • Moses HL, Yang EY, Pietenpol JA (1990) TGF-β stimulation and inhibition of cell proliferation: new mechanistic insights. Cell 63:245–247

    PubMed  CAS  Google Scholar 

  • Mosher DF (ed) (1989) Fibronectin. Academic Press, San Diego

    Google Scholar 

  • Munro JM, Cotran RS (1988) The pathogenesis of atherosclerosis: atherogenesis and inflammation. Lab Invest 58:249–261

    PubMed  CAS  Google Scholar 

  • Mustoe TA, Pierce GF, Thomason A, Gramates P, Sporn MB, Deuel TF (1987) Accelerated healing of incisional wounds in rats induced by transforming growth factor-β. Science (Wash DC) 234:1333–1335

    Google Scholar 

  • Naftilan AJ, Pratt RE, Dzau VJ (1989) Induction of platelet-derived growth factor A-chain and c-myc gene expressions by angiotensin II in cultured rat vascular smooth muscle cells. J Clin Invest 83:1419–1424

    PubMed  CAS  Google Scholar 

  • Overturf M (1990) Are calcium ion antagonists effective anti-atherogenic agents? Arteriosclerosis 10:961–962

    PubMed  CAS  Google Scholar 

  • Owens GK (1989) Control of hypertrophic versus hyperplastic growth of vascular smooth muscle cells. Am J Physiol 252:H1755–H1765

    Google Scholar 

  • Owens GK, Geisterfer AAT, Yang Y W-H Komoriya A (1988) TGF-β-induced growth inhibition and cellular hypertrophy in cultured vascular smooth muscle cells. J Cell Biol 107:771–780

    PubMed  CAS  Google Scholar 

  • Parkes JL, Cardell RR, Hubbard FC Jr, Meltzer A, Penn A (1991) Cultured human atherosclerotic plaque smooth muscle cells retain transforming potential and display enhanced expression of the myc proto-oncogene. Am J Pathol 138:765–775

    PubMed  CAS  Google Scholar 

  • Pierce GF, Mustoe TA, Senior RM, Reed J, Griffin GL, Thomason A, Deuel TF (1988) In vivo incisional wound healing augmented by platelet-derived growth factors and recombinant c-sis gene homodimeric proteins. J Exp Med 167:974–987

    PubMed  CAS  Google Scholar 

  • Pober JS (1988) Cytokine-mediated activation of vascular endothelium: physiology and pathology. Am J Pathol 133:425–433

    Google Scholar 

  • Powell JS, Clozel JP, Mullër RKM, Kuhn H, Hefti F, Hosang M, Baumgartner HR (1989) Inhibitors of angiotensin-converting enzyme prevent myointimal proliferation after vascular injury. Science 245:186–188

    PubMed  CAS  Google Scholar 

  • Rappolee DA, Mark D, Banda MJ, Werb Z (1988) Wound macrophages express TGF-α and other growth factors in vivo: analysis by mRNA phenoty**. Science (Wash DC) 241:708–712

    CAS  Google Scholar 

  • Reidy MA, Schwartz SM (1983) Endothelial injury and regeneration. IV. Endotoxin: a nondenuding injury to aortic endothelium. Lab Invest 48:25–34

    PubMed  CAS  Google Scholar 

  • Reilly C, Fritze LMS, Rosenberg RD (1988) Heparin-like molecules regulate the number of epidermal growth factor receptors on vascular smooth muscle cells. J Cell Physiol 136:23–32

    PubMed  CAS  Google Scholar 

  • Rifkin DB, Moscatelli D (1989) Recent developments in the cell biology of basic fibroblast growth factor. J Cell Biol 109:1–6

    PubMed  CAS  Google Scholar 

  • Risau W (1986) Develo** brain produces an angiogenic factor. Proc Natl Acad Sci USA 83:3855–3859

    PubMed  CAS  Google Scholar 

  • Ross R, Masuda J, Raines EW (1990a) Cellular interactions, growth factors, and smooth muscle proliferation in atherogenesis. Ann NY Acad Sci 598:102–111

    PubMed  CAS  Google Scholar 

  • Ross R, Masuda J, Raines EW, Gown AM, Katsuda S, Sasahara M, Maiden LT, Masuko H, Sato H (1990b) Localization of PDGF-B protein in macrophages in all phases of atherogenesis. Science 248:1009–1012

    PubMed  CAS  Google Scholar 

  • Rubin L, Tingstrom A, Hansson GK, Larsson E, Ronnstrand L, Klareskog L, Claesson-Welsh L, Heldon C-H, Fellstrom B, Terracio L (1988) Induction of B-type receptors for platelet-derived growth factor in vascular inflammation: possible implications for development of vascular proliferative lesions. Lancet i:1353–1356

    Google Scholar 

  • Schwartz CJ, Valente AJ, Kelly JL, Sprague EA, Edwards EH (1988) Thrombosis and the development of atherosclerosis: Rokitansky revisited. Semin Thromb Hemost 14:189–194

    PubMed  CAS  Google Scholar 

  • Speir E, Sasse J, Shrivastav S, Casscells W (1991) Culture-induced increase in acidic and basic fibroblast growth factor activities and their association with the nuclei of vascular endothelial and smooth muscle cells. J Cell Physiol 147:362–373

    PubMed  CAS  Google Scholar 

  • Spirito P, Fu Y-M, Yu Z-X, Epstein SE, Casscells W (1991) Immunohistochemical localization of basic and acidic fibroblast growth factors in the develo** rat heart. Circulation (in press)

    Google Scholar 

  • Sporn MB, Roberts AB (1990) TGF-β: problems and prospects. Cell Regul 1:875–882

    PubMed  CAS  Google Scholar 

  • Steele PM, Chesebro JH, Stanson AW, Holmes DR Jr, Dewanjee MK, Badimon L, Fuster F (1985) Balloon angioplasty: natural history of the pathophysiological response to injury in a pig model. Circ Res 57:105–112

    PubMed  CAS  Google Scholar 

  • Steinberg D (1990) Arterial metabolism of lipoproteins in relation to atherogenesis. Ann NY Acad Sci 598:125–135

    PubMed  CAS  Google Scholar 

  • Stemerman MB, Spaet TH, Pitlick F, Cintron J, Lejnieks I, Tiell ML (1977) intimal healing: the pattern of reendothelialization and intimal thickening. Am J Pathol 87:125–142

    PubMed  CAS  Google Scholar 

  • Tada T, Reidy MA (1987) Endothelial regneration. IX. Arterial injury followed by rapid endothelial repair induces smooth-muscle-cell proliferation but not intimal thickening. Am J Pathol 129:429–433

    PubMed  CAS  Google Scholar 

  • Takasaki I, Chobanian AV, Sarzani R, Brecher P (1990) Effect of hypertension on fibronectin expression in the rat aorta. J Biol Chem 265:21935–21939

    PubMed  CAS  Google Scholar 

  • Terrado L, Ronnstrand L, Tingstrom A, Rubin K, Claesson-Welsh L, Funa K, Heldin C-H (1988) Induction of platelet-derived growth factor receptor expression in smooth muscle cells and fibroblasts upon tissue culturing. J Cell Biol 107:1947–1957

    Google Scholar 

  • Vitetta E, Thorpe PE (1991) Immunotoxins. In: DeVita V, Hellman S, Rosenberg S (eds) Biologic therapy of cancer: principles and practice. Lippincott, Philadelphia (in press)

    Google Scholar 

  • Vlodavsky I, Fridman R, Sullivan R, Sasse J, Klagsbrun M (1987) Aortic endothelial cells synthesize basic fibroblast growth factor which remains cell associated and platelet-derived growth factor-like protein which is secreted. J Cell Physiol 131:402–408

    PubMed  CAS  Google Scholar 

  • Waller BF, Gorfinkel HJ, Rogers FJ, Kent K, Roberts W (1984) Early and late morphological changes in major epicardial coronary arteries after percutaneous transluminal coronary angioplasty. Am J Cardiol 53(Suppl C):42C–47C

    PubMed  CAS  Google Scholar 

  • Weich HA, Iberg N, Klagsbrun M, Folkman J (1990) Expression of acidic and basic fibroblast growth factors in human and bovine vascular smooth muscle cells. Growth Factors 2:313–320

    PubMed  CAS  Google Scholar 

  • Wight LN (1989) Cell biology of arterial proteoglycans. Arteriosclerosis 9:1–20

    PubMed  CAS  Google Scholar 

  • Wilcox JN, Smith KM, Williams LT, Schwartz SM, Gordon D (1988) Platelet-derived growth factor mRNA detection in human atherosclerotic plaque by in situ hybridization. J Clin Invest 82:1134–1143

    PubMed  CAS  Google Scholar 

  • Willerson JT, Golino P, Eidt J, Campbell WB, Buja LM (1989) Specific platelet mediators and unstable coronary artery lesions. Circulation 80:198–205

    PubMed  CAS  Google Scholar 

  • Winkles JA, Friesel R, Burgess WH, Howk R, Mehlman T, Weinstein R, Maciag T (1987) Human vascular smooth muscle cells both express and respond to heparin-binding growth factor 1 (endothelial cell growth factor). Proc Natl Acad Sci, USA 84:7124–7128

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag London Limited

About this chapter

Cite this chapter

Casscells, W. (1992). Basic Fibroblast Growth Factor in Vascular Development and Atherogenesis. In: Gotto, A.M. (eds) Cellular and Molecular Biology of Atherosclerosis. Argenteuil Symposia. Springer, London. https://doi.org/10.1007/978-1-4471-1909-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1909-8_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1911-1

  • Online ISBN: 978-1-4471-1909-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation