Collision/Contact Models for Dynamic Simulation and Haptic Interaction

  • Conference paper
Robotics Research

Abstract

In this paper we present a general framework for the dynamic simulation and haptic exploration of complex virtual environments. This work builds on previous developments in simulation, haptics, and operational space control. The relations between the dynamic models used in simulation and the models originally developed for robotic control are also presented. This framework has been used to develop a simulator that can model complex interaction between generalized articulated mechanical systems and permit direct “hands-on” interaction with the virtual environment through a haptic interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hollerbach, J.M., Cohen, E., Thompson, W., Freier, R., Johnson, D., Nahvi, A., Nelson, D., Thompson, T., and Jacobsen, S., “Haptic Interfacing for Virtual Prototy** of Mechanical CAD Designs,” Proc. ASME Design for Manufacturing Symposium, Sacramento, Sept. 14–17, 1997.

    Google Scholar 

  2. C. Zilles, J. Salisbury, “Constraint-based God-object Method for Haptic Display.” ASME Haptic Interfaces for Virtual Environment and Teleoperator Systems 1994, Dynamic Systems and Control 1994, vol. 1, pp. 146–150.

    Google Scholar 

  3. Ruspini, D., Kolarov, K., Khatib, O., “Graphical and Haptic Manipulation of 3D Objects.” First PHANToM User’s Group Workshop, September 27–30, 1996.

    Google Scholar 

  4. Ruspini, D., Kolarov, K., Khatib, O., “The Haptic Display of Complex Graphical Environments.” SIG-GRAPH 97 Proceedings, (August 1997), pp. 345–352.

    Google Scholar 

  5. D. Baraff, “Analytical methods for dynamic simulation of non-penetrating rigid bodies,“ Computer Graphics 23, (August 1989), pp. 223–232.

    Article  Google Scholar 

  6. D. Baraff, “Fast Contact Force Computation for Nonpenetrating Rigid Bodies,” SIGGRAPH 94 Proceedings, (August 1994), pp. 23–34.

    Chapter  Google Scholar 

  7. B. Mirtich, J. Canny, “Impulse-based Dynamic Simulation,” Proceedings of Workshop on Algorithmic Foundations of Robotics, February 1994.

    Google Scholar 

  8. D. Baraff, “Linear-Time Dynamics using Lagrange Multipliers,” SIGGRAPH 96 Proceedings, (August 1996), pp. 137–146.

    Chapter  Google Scholar 

  9. R. Featherstone. Robot Dynamics Algorithms. Kluwer, 1987.

    Google Scholar 

  10. K. Chang, and O. Khatib, “Operational Space Dynamics: Efficient Algorithms for Robot Simulation and Control,” submitted to ICRA 2000, May 2000.

    Google Scholar 

  11. K. Chang, and O. Khatib, “Efficient Algorithms for Extended Operational Space Inertia Matrix,” IROS ‘89, October 1999.

    Google Scholar 

  12. R. S. Palmer, “Computational Complexity of Motion and Stability of Polygons, PhD Diss., Cornell University, Jan. 1987.

    Google Scholar 

  13. Khatib, O., “A Unified Approach to Motion and Force Control of Robot Manipulators: The Operational Space Formulation,” IEEE J. on Robotics and Automation, Vol. 3, No. 1, 1987.

    Google Scholar 

  14. P. Gill, S. Hammarling, W. Murray, M. Saunders and M. Wright, “User’s guide to LLSOL,” Stanford University Technical Report SOL 86–1, (January 1996).

    Google Scholar 

  15. O. Khatib, “Reduced effective inertia in macro/minimanipulator systems.” In Miura H., and Arimoto, S. (eds.): Robotics Research S. Cambridge, MA: MIT Press, pp. 279–284.

    Google Scholar 

  16. O. Khatib, “Object manipulation in a multi-effector robot system.” In Bolles, R., and Roth B. (eds.): Robotics Research 4. Cambridge, MA: MIT Press, pp. 137–144.

    Google Scholar 

  17. J. Russakow, and O. Khatib, “A new control structure for free-flying space robots,“ International Symposium on Artificial Intelligence, Robotics and Automation in Space, Toulouse, France, pp. 395–403.

    Google Scholar 

  18. P.U. Lee, D.C. Ruspini and O. Khatib, “Dynamic Simulation of Interactive Robotic Environment,” International Conference on Robotics and Automation, San Diego, CA,(May 1994 ), pp. 1147–1152.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag London

About this paper

Cite this paper

Ruspini, D.C., Khatib, O. (2000). Collision/Contact Models for Dynamic Simulation and Haptic Interaction. In: Hollerbach, J.M., Koditschek, D.E. (eds) Robotics Research. Springer, London. https://doi.org/10.1007/978-1-4471-0765-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0765-1_23

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1254-9

  • Online ISBN: 978-1-4471-0765-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation