A Modal-Geometrical Selection Criterion for Master Nodes: Numerical and Experimental Testing

  • Conference paper
  • First Online:
Linking Models and Experiments, Volume 2

Abstract

Usually, the problem of master nodes selection characterizes both computational or experimental modal analyses and defines the numerical properties of reduced models that possess equivalent dynamic properties. Methodologies based on experience are normally used or heavy time-consuming numerical algorithms can be applied. In that paper, the Modal-Geometrical Selection Criterion (MoGeSeC) is applied to a crankshaft, both for an EMA (experimental modal analysis) and for a reduction procedure applied on progressive numerical models. Then the results are compared with other literature criteria and algorithms. The nodes suggested by MoGeSeC and other criteria are used for identification tools of the dynamic behaviour of the crankshaft. In that way MoGeSeC proves to be a very quick and accurate method because the nodes it selects depicts very well modal features of the tested component. The proposed criterion is also applied to the component in order to evaluate the reduced inertia and stiffness matrices and their numerical ill-conditioning is measured. Also in that case MoGeSeC provides the analyzer with a good instrument for identification processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

BIBLIOGRAPHY

  1. M.I. Friswell, J.E. Mottershead, Finite Element Model Updating in Structural Dynamics, Dordrecht, Kluwer, 1995.

    Book  MATH  Google Scholar 

  2. Maia N., Silva, J., “Theoretical and Experimental Modal Analysis”, Research Studies Press Ltd., New York, ISBN 978-0863802089, 1997.

    Google Scholar 

  3. J. Peck, I. Torres, A DMAP program for the selection of accelerometer locations in MSC/NASTRAN, in: Proc. 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Palm Springs, CA, USA, 2004, 19–22.

    Google Scholar 

  4. J.N. Ramsden, J.R. Stoker, Mass condensation – A semi-automatic method for reducing the size of vibration problems, International Journal for Numerical Methods in Engineering 1 (1969) 333–349.

    Article  Google Scholar 

  5. B. Downs, Accurate reduction of stiffness and mass matrices for vibration analysis and a rationale for selecting master degree of freedom, ASME Journal of Mechanical Design 102 (1980) 412–416.

    Article  Google Scholar 

  6. N. Popplewell, A.W. Bertels, B. Arya, A critical appraisal of the eliminating technique, Journal of Sound and Vibration 31 (2) (1973) 213–233.

    Article  Google Scholar 

  7. V.N. Shah, M. Raymond, Analytical selection of masters for the reduced eigenvalue problem, International Journal of Numerical Methods in Engineering 18 (1982) 89–98.

    Article  MATH  Google Scholar 

  8. K.W. Matta, Selection of dofs for dynamic analysis, Journal of Pressure Vessel Technology 109 (1) (1987) 65–69.

    Article  Google Scholar 

  9. N.I. Grinenko, V.V. Mokeev, Problems of studying vibrations of structures by the finite element method, (English trans.), Prikladnaya Mekhanika 21 (1985) 231–235.

    MATH  Google Scholar 

  10. W. Li, A degree selection method of matrix condensations for eigenvalue problems, Journal of Sound and Vibration 259 (2) (2003) 409–425.

    Article  MathSciNet  MATH  Google Scholar 

  11. D.C. Kammer, R.D. Brillhart, Optimal sensor placement for modal identification using system-realization methods, Journal of Guidance, Control and Dynamics 19 (1996) 729–731.

    Article  MATH  Google Scholar 

  12. M. Meo, G. Zumpano, On the optimal sensor placement techniques for a bridge structure, Engineering Structures 27 (2005) 1488–1497.

    Article  Google Scholar 

  13. D.S. Li, H.N. Li, C.P. Fritzen, The connection between effective independence and modal kinetic energy methods for sensor placement, Journal of Sound and Vibration 305 (2007) 945–955.

    Article  Google Scholar 

  14. J. O’Callahan, P. Avitabile, R. Riemer, System equivalent reduction expansion process (SEREP), in: Proc. 7th IMAC, Las Vegas, Nevada, USA, 1989, 29–37.

    Google Scholar 

  15. D.C. Kammer, M.L. Tinker, Optimal placement of triaxial accelerometers for model vibration tests, Journal of Mechanical Systems and Signal Processing 18 (2004) 29–41.

    Article  Google Scholar 

  16. R.J. Allemang, D.L. Brown, A correlation coefficient for modal vector analysis, in: Proc. 1st IMAC, Orlando, Florida, USA, 1982, 110–116.

    Google Scholar 

  17. R.D. Henshell, J.H. Ong, Automatic masters for eigenvalue economization, Earthquake Engineering Structural Dynamics 3 (1975) 375–383.

    Article  Google Scholar 

  18. E. Bonisoli, C. Delprete, C. Rosso, “Comparison between dynamic condensation techniques in automotive application”, SAE 2006 World Congress, 2006, Detroit, Michigan, April 3-6, ISSN: 0148-7191, SAE Technical Paper 2006-01-1093, pp. 1-8.

    Google Scholar 

  19. E. Bonisoli, C. Delprete, C. Rosso, “A modal-geometrical selection criterion in dynamic condensation techniques”, Proceedings of ESDA 2006, 8 th Biennial ASME Conference on Engineering Systems Design and Analysis, 2006, Torino, Italy, July 4-7, Paper ESDA2006-95469, pp. 1-8.

    Google Scholar 

  20. E. Bonisoli, C. Delprete, C. Rosso, “Proposal of a modal-geometrical-based master nodes selection criterion in modal analysis”, Mechanical Systems and Signal Processing, April 2009, 23(3), ISSN: 0888-3270, DOI: 10.1016/j.ymssp.2008.05.012, pp. 606-620.

    Google Scholar 

  21. R.J. Guyan, Reduction of stiffness and mass matrices, AIAA Journal 3 (2) (1965) 380.

    Article  Google Scholar 

  22. R.R. Craig, M.C.C. Bampton, Coupling of substructures for dynamic analyses, AIAA Journal 6 (7) (1968) 1313–1319.

    Article  MATH  Google Scholar 

  23. G.H. Golub, C.F. Van Loan, Matrix computations, North Oxford Academy, London, UK, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Bonisoli, E., Delprete, C., Rosso, C. (2011). A Modal-Geometrical Selection Criterion for Master Nodes: Numerical and Experimental Testing. In: Proulx, T. (eds) Linking Models and Experiments, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9305-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9305-2_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9304-5

  • Online ISBN: 978-1-4419-9305-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation