Abstract

Diagnostics for helical systems are reviewed. A helical system is expected to be a disruption-free steady-state reactor since no plasma current is required. Different types of medium-sized helical systems such as CHS1, W7-AS2, Heliotron E3 and J4, H-1NF Heliac5 and HSX have been developed and constructed. Recently, a large helical device (LHD) has been constructed in Japan and another large one (W7-X8) is under construction in Germany. These two devices are fully equipped with superconducting magnets, modern diagnostics and high power heating systems. The plasma parameters are expected to be comparable to large tokamaks. While most plasma diagnostics are similar to those for tokamaks, there are also specific features: (1) measurement of vacuum magnetic flux surfaces; (2) intrinsic 3-D structure including divertor; (3) intensive diagnostics for the electric field; (4) diagnostics to verify device design elements; (5) high density diagnostics; (6) steady state operation. W7-X optimization principles call for sensitive current diagnostics (Pfirsch-Schlüter and bootstrap currents) and tomographic means to verify the reduced Shafranov shift as well as fast particle confinement diagnostics11. Steady state or long pulse operation fulfills the demands of correlation diagnostics as Te fluctuation measurements, it allows for coherent averaging and it enables scans of various diagnostics. Examples are: i) polarization scans of ECE, ii) wavelength scans of spectrometers, and iii) spatial scans of several diagnostics. The special features of diagnostics for helical systems are described in the following chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. K. Matsuoka, et al., Plasma Physics and Controlled Nuclear Fusion Research, 1988, Vol.2, IAEA, Vienna (1989) 411.

    Google Scholar 

  2. H. Renner, et al., Plasma Phys. Control. Fusion, 31, 1579 (1989).

    Article  ADS  Google Scholar 

  3. K. Uo, et al., in Controlled Fusion and Plasma Physics (Proc. 10th Int. Conf. Moscow, 1981),EPS(1981)E-1.

    Google Scholar 

  4. T. Obiki, et al., Nucl. Fusion, 41, 833 (2001).

    Article  ADS  Google Scholar 

  5. J. Harris, et al., The Australian & New Zealand Physics, 35, 245 (1988).

    Google Scholar 

  6. D. T. Anderson, et al., J. Plasma Fusion Res. SERIES1, 49 (1998).

    Google Scholar 

  7. O. Motojima, et al., Phys. Plasma6, 1021 (1999).

    Article  Google Scholar 

  8. G Grieger et al., Phys. FluidsB 4, 2081 (1992), F. Wagner, Int. Conf. on Accelerator and Plasma Research, Tae Jeon, Korea, Advanced Fusion Science Research, p. 41 (1995).

    ADS  Google Scholar 

  9. H. J. Hartfuss et al., Rev. Sci. Instrum.68, 1244 (1997), and: Diagnostic System for the W7-X Stellarator, this conference.

    Article  ADS  Google Scholar 

  10. A. Weller et al., Fusion Engineering and Design34–45, 17 (1997).

    Google Scholar 

  11. A. Werner et al., Fast Ion Loss Diagnostics for the Wendelstein 7-X Stellarator, this conference.

    Google Scholar 

  12. M. S. Jones Jr., et al., Princeton Plasma Phys. Lab. Report., MATT-14 (July, 1959). T. Mizuuchi, et al., Nucl. Fusion 22 (1982) 247.

    Google Scholar 

  13. R. Takahashi, et al., Proc. Int. Stellarator/Heliotron Workshop (IAEA Tech. Committee Meeting) (Kyoto, 1986). Plasma Phys. Lab. Report PPLK-5, 1, 220 (1986).

    Google Scholar 

  14. R. Jaenicke et al., Nuclear Fusion33, 687 (1993).

    Article  ADS  Google Scholar 

  15. A. G Dikiji, et al., Sov. J. Plasma Phys.14 (1988) 160. J. V. Gutarev, et al., Proc. Int. Stellarator/Heliotron Workshop (IAEA Tech. Committee Meeting) (Kyoto, 1986). Plasma Phys. Lab. Report PPLK-5, Vol. 1 (1986) 233.

    Google Scholar 

  16. F. Sano, et al., J. Nucl. Mater., 241-243, 961 (1977).

    ADS  Google Scholar 

  17. T. Mizuuchi, et al., J. Nucl. Mater., 162-164, 105 (1989).

    Article  ADS  Google Scholar 

  18. P. Grigull et al., First Island Divertor Experiments on W7-AS, 28th EPS CFPP, Madeira, Portugal, June, 2001, to be published inPlasma Phys. Control. Fusion.

    Google Scholar 

  19. H. Renner et al., Nucl. Fusion40, 1083 (2000).

    Article  ADS  Google Scholar 

  20. V. Erckmann et al., Fusion Engineering and Design53, 365–375 (2001).

    Article  Google Scholar 

  21. K. Watanabe et al, Nuclear Fusion32, 1992 (1992).

    Google Scholar 

  22. K. Narihara, I. Yamada and T. Minami, Proc. 6th International Symposium on Laser-Aided Plasma Diagnostics, Bar Harbor (1993) p.108.

    Google Scholar 

  23. H. Okada et al., Proc. 1996 int. Conf. on Plasma Physics, Vol. 2 (Nagoya, 1996) pp.1434–1435.

    Google Scholar 

  24. A. Weller et al., Rev. Sci. Instr.70, 484 (1999).

    Article  ADS  Google Scholar 

  25. A. Weller et al., Physics of Plasmas8, 931 (2001).

    Article  ADS  Google Scholar 

  26. S. Sudo et al., 17th Conf. Proceedings of Fusion Energy, IAEA, Yokohama, Japan, EXP1/18 (1998).

    Google Scholar 

  27. S. Kado et al., Jpn. J. Appl. Phys.34, 6492 (1995).

    Article  ADS  Google Scholar 

  28. R. Brakel et al., Plasma Phys. Control. Fusion39, B237 (1997).

    Article  Google Scholar 

  29. A. Fujisawa, H. Iguchi, M. Sasao et al., Rev. Sci. Instrum.68, 3393(1992).

    Article  ADS  Google Scholar 

  30. A. Fujisawa, H. Iguchi, T. Minami et al. Physics of Plasmas7, 4152(2000).

    Article  ADS  Google Scholar 

  31. K. Ida, A. Fujisawa, et al., Phys. Plasmas, 8, 1 (2001).

    Article  ADS  Google Scholar 

  32. H. P. Laqua et al., Phys. Rev. Lett.78, 3467 (1997).

    Article  ADS  Google Scholar 

  33. H. P. Laqua and H. J. Hartfuss, Phys. Rev. Lett.81, 2060 (1998).

    Article  ADS  Google Scholar 

  34. Ch. Fuchs and H. J. Hartfuss, Rev. Sci. Instrum.72, 383 (2001).

    Article  ADS  Google Scholar 

  35. F. Volpe and H. P. Laqua, Development of an electron Bernstein emission diagnostic for temperature profiles above the EC-cutoff density at Wendelstein 7-AS Stellarator, 28th EPS CFPP, Madeira, Portugal, June, 2001. See also paper by F. Volpe, Electron Bernstein Wave Diagnostics, at this conference.

    Google Scholar 

  36. Y. Nagayama, et al., Rev. Sci. Instrum.70, 1012 (1999).

    Article  ADS  Google Scholar 

  37. P. de Vries, et al., Phys. Plasma.7, 3707 (2000).

    Article  ADS  Google Scholar 

  38. T. Ozaki, et al., Rev. Sci. Instrum.72, 2698 (2000).

    Article  ADS  Google Scholar 

  39. M. Isobe et al., Rev. Sci. Instrum.70 (1999) 827.

    Article  ADS  Google Scholar 

  40. A. Werner et al., Rev. Sci. Instrum.72 (2001) 780.

    Article  ADS  Google Scholar 

  41. T. Kondo et al. Nuclear Fusion40 (2000) 1575.

    Article  ADS  Google Scholar 

  42. S. Sattler and H. Hartfuss, Phys. Rev. Lett.72, 653 (1994).

    Article  ADS  Google Scholar 

  43. H. Hartfuss et al., Plasma Phys. Control. Fusion38, A227 (1996).

    Article  ADS  Google Scholar 

  44. F. C. Jobes, D. K. Mansfield: Rev. Sci. Instrum.63, 5154 (1992).

    Article  ADS  Google Scholar 

  45. T. Akiyama, E. Sato, T. Nozawa et al: Rev. Sci. Instrum.72, 1073 (2001).

    Article  ADS  Google Scholar 

  46. Ch. Fuchs and H. Hartfuss, Phys. Rev. Lett.81, 1626 (1998).

    Article  ADS  Google Scholar 

  47. B. J. Peterson et al., Rev. Sci. Instrum.72, 923 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sudo, S. et al. (2002). Diagnostics for Helical Systems. In: Stott, P.E., Wootton, A., Gorini, G., Sindoni, E., Batani, D. (eds) Advanced Diagnostics for Magnetic and Inertial Fusion. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8696-2_65

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8696-2_65

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4669-2

  • Online ISBN: 978-1-4419-8696-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation