Simulation-Based Optimality Tests for Stochastic Programs

  • Chapter
  • First Online:
Stochastic Programming

Abstract

Assessing whether a solution is optimal, or near-optimal, is fundamental in optimization. We describe a simple simulation-based procedure for assessing the quality of a candidate solution to a stochastic program. The procedure is easy to implement, widely applicable, and yields point and interval estimators on the candidate solutions optimality gap. Our simplest procedure allows for significant computational improvements. The improvements we detail aim to reduce computational effort through single- and two-replication procedures, reduce bias via a class of generalized jackknife estimators, and reduce variance by using a randomized quasi-Monte Carlo scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed, S., Shapiro, A.: The sample average approximation method for stochastic programs with integer recourse. Optim. Online, http://www.optimization-online.org, 2002, accessed September 26, (2002)

  • Attouch, H., Wets, R.J.-B.: Approximation and convergence in nonlinear optimization. In: Mangasarian, O., Meyer, R., Robinson, S., (eds.) Nonlinear Programming 4, pp. 367–394. Academic, New York, NY (1981)

    Google Scholar 

  • Bailey, T.G., Jensen, P., Morton, D.P.: Response surface analysis of two-stage stochastic linear programming with recourse. Naval Res. Logistics, 46, 753–778 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Bayraksan, G., Morton, D.P.: Assessing solution quality in stochastic programs. Math. Program. 108, pp. 495–514 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Bayraksan, G., Morton, D.P.: A sequential sampling procedure for stochastic programming Oper. Res. (2010)

    Google Scholar 

  • Bayraksan, G., Morton, D.P.: Assessing solution quality in stochastic programs via sampling. In Oskoorouchi, M. R. (ed.) Tutorials in Operations Research, pp. 102–122. INFORMS, Hanover, MD (2009b)

    Google Scholar 

  • Beale, E.M.L.: On minimizing a convex function subject to linear inequalities. J. R. Stat. Soc. 17B, 173–184 (1955)

    MathSciNet  Google Scholar 

  • Bertocchi, M., Dupačová, J., Moriggia, V.: Sensitivity of bond portfolio’s behavior with respect to random movements in yield curve: A simulation study. Ann. Oper. Res. 99, 267–286 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Brooke, A., Kendrick, D., Meeraus, A., Raman, R.: GAMS, A User’s Guide, 2006. GAMS Development Corporation, Washington, DC, http://www.gams.com/, accessed September 26 (2006)

  • Caflisch, R.E., Morokoff, W.J., Owen, A.B.: Valuation of mortgage backed securities using Brownian bridges to reduce effective dimension. J. Comput. Finance 1, 27–46 (1997)

    Google Scholar 

  • Campi, M.C., Garatti, S.: The exact feasibility of randomized solutions of robust convex programs. Optim. Online. http://www.optimization-online.org, accessed September 26 (2007)

  • Casella, G., Berger, R.L.: Statistical Inference. Duxbury Press, Belmont, CA (1990)

    Google Scholar 

  • Dantzig, G.B.: Linear programming under uncertainty. Manage. Sci. 1, 197–206 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  • Dantzig, G.B., Glynn, P.W.: Parallel processors for planning under uncertainty. Ann. Oper. Res. 22, 1–21 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Dantzig, G.B., Infanger, G.: A probabilistic lower bound for two-stage stochastic programs, Department of Operations Research, Stanford University, Stanford, CA, November (1995)

    Book  Google Scholar 

  • Diwekar, U.M., Kalagnanam, J.R.: An efficient sampling technique for optimization under uncertainty. Am. Inst. Chem. Eng. J. 43, 440 (1997)

    Article  Google Scholar 

  • Dupačová, J.: On non-normal asymptotic behavior of optimal solutions for stochastic programming problems and on related problems of mathematical statistics. Kybernetika. 27, 38–52 (1991)

    MathSciNet  MATH  Google Scholar 

  • Dupačová, J., Wets, R.J.-B.: Asymptotic behavior of statistical estimators and of optimal solutions of stochastic optimization problems. Ann. Stat. 16, 1517–1549 (1988)

    Article  MATH  Google Scholar 

  • Fox, B.L.: Strategies for Quasi-Monte Carlo. Kluwer, Boston, MA (1999)

    Book  Google Scholar 

  • Freimer, M., Thomas, D., Linderoth, J.T.: Reducing bias in stochastic linear programming with sampling methods, Technical Report 05T-002, Industrial and Systems Engineering, Lehigh University (2005)

    Google Scholar 

  • Gray, H.L., Schucany, W.R.: The Generalized Jackknife Statistic. Marcel Dekker, New York, NY (1972)

    Google Scholar 

  • Higle, J.L.: Variance reduction and objective function evaluation in stochastic linear programs. INFORMS J. Comput. 10, 236–247 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Higle, J.L., Sen, S.: Statistical verification of optimality conditions for stochastic programs with recourse. Ann. Oper. Res. 30, 215–240 (1991a)

    Article  MathSciNet  MATH  Google Scholar 

  • Higle, J.L., Sen, S.: Stochastic decomposition: An algorithm for two-stage linear programs with recourse. Math. Oper. Res. 16, 650–669 (1991b)

    Article  MathSciNet  MATH  Google Scholar 

  • Higle, J.L., Sen, S.: Stochastic Decomposition: A Statistical Method for Large Scale Stochastic Linear Programming. Kluwer, Dordrecht (1996a)

    Google Scholar 

  • Higle, J.L., Sen, S.: Duality and statistical tests of optimality for two stage stochastic programs. Math. Program. 75, 257–275 (1996b)

    MathSciNet  MATH  Google Scholar 

  • Higle, J.L., Sen, S.: Statistical approximations for stochastic linear programming problems. Ann. Oper. Res. 85, 173–192 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Infanger, G.: Monte Carlo (importance) sampling within a Benders decomposition algorithm for stochastic linear programs. Ann. Oper. Res. 39, 69–95 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Infanger, G.: Planning Under Uncertainty: Solving Large-Scale Stochastic Linear Programs. The Scientific Press Series, Boyd & Fraser, Danvers, MA (1994)

    Google Scholar 

  • Kall, P.: On approximations and stability in stochastic programming. In: Guddat, J., Jongen, H.Th., Kummer, B., Nožička, F. (eds.) Parametric Optimization and Related Topics, pp. 387–407. Akademie-Verlag, Berlin (1987)

    Google Scholar 

  • Kenyon, A.S., Morton, D.P.: Stochastic vehicle routing with random travel times. Transport. Sci. 37, 69–82 (2003)

    Article  Google Scholar 

  • King, A.J., Rockafellar, R.T.: Asymptotic theory for solutions in statistical estimation and stochastic programming. Math. Oper. Res. 18, 148–162 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • King, A.J., Wets, R.J.-B.: Epi-consistency of convex stochastic programs. Stochastics and Stochastics Reports 34, 83–92 (1991)

    MathSciNet  MATH  Google Scholar 

  • Kleywegt, A.J., Shapiro, A., Homem-de-Mello, T.: The sample average approximation method for stochastic discrete optimization. SIAM J. Optim. 12, 479–502 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Korf, L.A., Wets, R.J.-B.: Random lsc functions: an ergodic theorem. Math. Oper. Res. 26, 421–445 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Lan, G., Nemirovski, A., Shapiro, A.: Validation analysis of robust stochastic approximation method. Optim. Online. http://www.optimization-online.org (2008)

  • Law, A.M.: Simulation Modeling and Analysis, 4th edn. McGraw-Hill, Boston, MA (2007)

    Google Scholar 

  • L’Ecuyer, P., Lemieux, C.: Variance reduction via lattice rules. Manage. Sci. 46, 1214–1235 (2000)

    Article  MATH  Google Scholar 

  • Linderoth, J.T., Shapiro, A., Wright, S.: The empirical behavior of sampling methods for stochastic programming. Ann. Oper. Res. 142, 215–241 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Mak, W.K., Morton, D.P., Wood, R.K.: Monte Carlo bounding techniques for determining solution quality in stochastic programs. Oper. Res. Lett. 24, 47–56 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Morton, D.P., Popova, E.: A Bayesian stochastic programming approach to an employee scheduling problem. IIE Trans. Oper. Eng. 36, 155–167 (2003)

    Article  Google Scholar 

  • Morton, D.P., Wood, R.K.: On a stochastic knapsack problem and generalizations. In: Woodruff, D.L. (ed.) Advances in Computational and Stochastic Optimization, Logic Programming, and Heuristic Search: Interfaces in Computer Science and Operations Research, pp. 149–168. Kluwer, Boston, MA (1998)

    Chapter  Google Scholar 

  • Morton, D.P., Popova, E., Popova, I.: Efficient fund of hedge funds construction under downside risk measures. J. Bank. Finance 30, 503–518 (2006)

    Article  Google Scholar 

  • Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM (1992)

    Google Scholar 

  • Norkin, V.I., Pflug, G.Ch., Ruszczyński, A.: A branch and bound method for stochastic global optimization. Math. Program. 83, 425–450 (1998)

    MATH  Google Scholar 

  • Partani, A.: Adaptive Jackknife Estimators for Stochastic Programming. PhD thesis, The University of Texas at Austin (2007)

    Google Scholar 

  • Partani, A., Morton, D. P., Popova, I.: Jackknife estimators for reducing bias in asset allocation. In: Proceedings of the Winter Simulation Conference Monterey, California (2006)

    Google Scholar 

  • Pennanen, T., Koivu, M.: Epi-convergent discretizations of stochastic programs via integration quadratures. Numerische Math. 100, 141–163 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Quenouille, M.H.: Approximate tests of correlation in time-series. J. R. Stat. Soc. Series B 11, 68–84 (1949a)

    MathSciNet  MATH  Google Scholar 

  • Quenouille, M.H.: Problems in plane sampling. Ann. Math. Stat. 20, 355–375 (1949b)

    Article  MathSciNet  MATH  Google Scholar 

  • Robinson, S.M.: Analysis of sample-path optimization. Math. Oper. Res. 21, 513–528 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Robinson, S.M., Wets, R.J.-B.: Stability in two-stage stochastic programming. SIAM J. Control Optim. 25, 1409–1416 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Rubinstein, R.Y., Shapiro, A.: Discrete Event Systems: Sensitivity and Stochastic Optimization by the Score Function Method. Wiley, Chichester (1993)

    Google Scholar 

  • Santoso, T., Ahmed, S., Goetschalckx, M., Shapiro, A.: A stochastic programming approach for supply chain network design under uncertainty. Eur. J. Oper. Res. 167, 96–115 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Shapiro, A.: Asymptotic properties of statistical estimators in stochastic programming. Ann. Stat. 17, 841–858 (1989)

    Article  MATH  Google Scholar 

  • Shapiro, A.: Monte Carlo sampling methods. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming, Handbooks in Operations Research and Management Science. Elsevier, Amsterdam (2003)

    Google Scholar 

  • Shapiro, A., Homem-de-Mello, T.: A simulation-based approach to two-stage stochastic programming with recourse. Math. Program. 81, 301–325 (1998)

    MathSciNet  MATH  Google Scholar 

  • Shapiro, A., Homem-de-Mello, T., Kim, J.: Conditioning of convex piecewise linear stochastic programs. Math. Program. 94, 1–19 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory. MPS-SIAM Series on Optimization, Philadelphia, PA (2009)

    Book  Google Scholar 

  • Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Clarendon Press, Oxford (1994)

    Google Scholar 

  • Verweij, B., Ahmed, S., Kleywegt, A., Nemhauser, G., Shapiro, A.: The sample average approximation method applied to stochastic vehicle routing problems: A computational study. Comput. Appl. Optim. 24, 289–333 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Wallace, S.W., Ziemba, W.T. (eds.) Applications of Stochastic Programming. MPS-SIAM Series on Optimization, Philadelphia, PA (2005)

    Google Scholar 

  • Watkins, D.W., Jr., McKinney, D.C., Morton, D.P.: Groundwater pollution control. In: Wallace, S.W., Ziemba, W.T. (eds.) Applications of Stochastic Programming, pp. 409–424. MPS-SIAM Series on Optimization, Philadelphia, PA (2005)

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors thank Georg Pflug for valuable discussions, particularly with respect to Example 3.2. This research was supported by the National Science Foundation under grants CMMI-0653916 and EFRI-0835930.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Güzin Bayraksan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bayraksan, G., Morton, D.P., Partani, A. (2010). Simulation-Based Optimality Tests for Stochastic Programs. In: Infanger, G. (eds) Stochastic Programming. International Series in Operations Research & Management Science, vol 150. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1642-6_3

Download citation

Publish with us

Policies and ethics

Navigation