Measurement and Modeling of Wireless Channels

  • Chapter
  • First Online:
New Directions in Wireless Communications Research

As wireless signals traverse the path from a transmitter to a receiver, they will be diffracted, scattered, and absorbed by the terrain, trees, buildings, vehicles, and people that comprise the propagation environment. In the process, the signal may be distorted or impaired in various ways. The presence of obstructions along the path may cause the signal to experience greater attenuation than it would under free space conditions. If the signal is scattered by obstacles located throughout the coverage area, replicas of the signal may take multiple paths from the transmitter to the receiver. Because the replicas will arrive at the receiver after different delays, the signal will experience time dispersion. Because the replicas will also arrive from different directions, the signal will experience angular dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. D. Parsons, The Mobile Radio Propagation Channel, Halsted Press, 1992, p. v.

    Google Scholar 

  2. A. H. Waynick, “The early history of ionospheric investigations in the United States,” Phil. Trans. R. Soc. Lond. A., vol. 280, no. 1293, pp. 11–25, 23 Oct. 1975.

    Article  Google Scholar 

  3. D. E. Kerr, Propagation of Short Radio Waves. vol. 13 of the MIT Radiation Laboratory Series. New York: McGraw-Hill, 1951.

    Google Scholar 

  4. Y. Okumura et al., “Field strength and its variability in VHF and UHF land-mobile radio service.” Rev. Elec. Commun. Lab., no. 9-10, pp. 825–873, 1968.

    Google Scholar 

  5. R. H. Clarke, “A statistical theory of mobile radio reception,” Bell Sys. Tech. J., vol. 47, pp. 957–1000, Jul.–Aug. 1968.

    Google Scholar 

  6. P. A. Bello, “Characterization of randomly time-variant linear channels,” IEEE Trans. Commun. Syst., vol. 11, no. 4, pp. 360–393, Dec. 1963.

    Article  Google Scholar 

  7. D. C. Cox, “Delay Doppler characteristics of multipath propagation at 910 MHz in a suburban mobile radio environment,” IEEE Trans. Antennas Propag., vol. 20, no. 5, pp. 625–635, Sep. 1972.

    Article  Google Scholar 

Characterization of Wireless Channels

  1. W. Jakes, Ed., Microwave Mobile Communications, Wiley, 1974.

    Google Scholar 

  2. D. Greenwood and L. Hanzo, “Characterization of mobile radio channels,” in Mobile Radio Communications, R. Steele, Ed., pp. 92–185, 1992.

    Google Scholar 

  3. H. L. Bertoni, W. Honcharenko, L. R. Maciel and H. H. **a, “UHF propagation prediction for wireless personal communication,” Proc. IEEE, vol. 82, no. 9, pp. 1333–1359, Sep. 1994.

    Article  Google Scholar 

  4. A. F. Molisch, Wireless Communications. Wiley, 2005, pp. 43–170.

    Google Scholar 

  5. S. Thoen, L. Van der Perre and M. Engels, “Modeling the channel time-variance for fixed wireless communications,” IEEE Commun. Lett., vol. 6, no. 8, pp. 331–333, Aug. 2002.

    Article  Google Scholar 

  6. A. A. M. Saleh and R. A. Valenzuela, “A statistical model for indoor multipath propagation,” IEEE J. Sel. Areas Commun., vol. 5, no. 1, pp. 128–137, Feb. 1987.

    Article  Google Scholar 

  7. R. B. Ertel, P. Cardieri, K. W. Sowerby, T. S. Rappaport and J. H. Reed, “Overview of spatial channel models for antenna array communication systems,” IEEE Pers. Commun., vol. 5, no. 1, pp.10–22, Feb. 1998.

    Article  Google Scholar 

  8. Q. H. Spencer, B. D. Jeffs, M. A. Jensen and A. L. Swindlehurst, “Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel,” IEEE J. Sel. Areas Commun., vol. 18, no. 3, pp. 347–360, Mar. 2000.

    Article  Google Scholar 

  9. M. Steinbauer, A. F. Molisch and E. Bonek, “The double-directional radio channel,” IEEE Antennas Propag. Mag., vol. 43, no. 4, pp. 51–63, Aug. 2001.

    Article  Google Scholar 

Ultrawideband Channel Models

  1. A. F. Molisch, J. R. Foerster and M. Pendergrass, “Channel models for ultrawideband personal area networks,” IEEE Wireless Commun., vol. 10, no. 6, pp. 14–21, Dec. 2003.

    Article  Google Scholar 

  2. A. F. Molisch, D. Cassioli, C. C. Chong, S. Emami, A. Fort, K. Balakrishnan, J. Karedal, J. Kunisch, H. G. Schantz, K. Siwiak and M. Z. Win, “A comprehensive standardized model for ultrawideband propagation channels,” IEEE Trans. Antennas Propag., vol. 54, no. 11, pp. 3151–3166, Nov. 2006.

    Article  Google Scholar 

  3. A. F. Molisch, “Ultrawideband propagation channels – Theory, measurement, and modeling,” IEEE Trans. Veh. Technol., vol. 54, no. 5, pp. 1528–1545, Sep. 2005.

    Article  Google Scholar 

  4. L. J. Greenstein, S. S. Ghassemzadeh, S. C. Hong and V. Tarokh, “Comparison study of UWB indoor channel models,” IEEE Trans. Wireless Commun., vol. 6, no. 1, pp. 128–135, Jan. 2007.

    Article  Google Scholar 

MIMO Channel Models

  1. G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Pers. Commun. vol. 6, pp. 311–335, 1998.

    Article  Google Scholar 

  2. D. Gesbert, M. Shafi, D. S. Shiu, P. J. Smith and A. Naguib, “From theory to practice: An overview of MIMO space-time coded wireless systems,” IEEE J. Sel. Areas Commun., vol. 21, no. 3, pp. 281–302, Apr. 2003.

    Article  Google Scholar 

  3. M. A. Jensen and J. W. Wallace, “A review of antennas and propagation for MIMO wireless communications,” IEEE Trans. Antennas Propag., vol. 52, no. 11, pp. 2810–2824, Nov. 2004.

    Article  Google Scholar 

  4. V. Erceg et al., “TGn channel models,” IEEE P802.11 Working Group for Wireless Local Area Networks, Doc. No. IEEE 802.11-03/940/r4, revised 10 May 2004.

    Google Scholar 

  5. D. S. Baum, J. Hansen, J. Salo, G. Del Galdo, M. Milojevic and P. Kyösti, “An interim channel model for beyond-3G systems,” in Proc. IEEE VTC 2005-Spring, 30 May–1 Jun. 2005, pp. 3132–3136.

    Google Scholar 

  6. M. Narandžić, C. Schneider, R. Thomä, T. Jämsä, P. Kyösti, X. Zhao, “Comparison of SCM, SCME and WINNER channel models,” in Proc. IEEE VTC 2007-Spring, 22–25 Apr. 2007, pp. 413–417.

    Google Scholar 

  7. P. Almers, E. Bonek, A. Burr, N. Czink, M. Debbah, V. degli-Esposti, H. Hofstetter, P. Kyösti, D. Laurenson, G. Matz, A. F. Molisch, C. Oestges and H. Özcelik, “Survey of channel and radio propagation models for wireless MIMO systems,” EURASIP J. Wireless Commun. Netw. vol. 2007, p. 19, doi:10.1155/2007/19070.

    Google Scholar 

Channel Models for Body Area Networks

  1. A. Alomainy, Y. Hao, X. Hu, C. G. Parini and P. S. Hall, “UWB on-body radio propagation and system modelling for wireless body-centric networks,” IEE Proc. Commun., vol. 153, no. 1, pp. 107–114, Feb. 2006.

    Article  Google Scholar 

  2. P. S. Hall and Y. Hao (Eds.), Antennas and Propagation for Body-centric Communications. Boston, MA : Artech House, 2006.

    Google Scholar 

  3. Y. Hao, P. S. Hall and K. Ito, (Eds.), Special Issue on Antennas and Propagation for Body-Centric Wireless Communications, IEEE Trans. Antennas Propag., to be published in Dec. 2008.

    Google Scholar 

  4. A. Fort, J. Ryckaert, C. Desset, P. De Donecker, P. Wambacq and L. Van Biesen, “Ultra-wideband channel model for communication around the human body,” IEEE J. Sel. Areas Commun., vol. 24, no. 4, pp. 927–933, Apr. 2006.

    Article  Google Scholar 

  5. A. Fort, C. Desset, P. De Donecker, P. Wambacq and L. Van Biesen, “An ultra-wideband body area propagation channel model: From statistics to implementation,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp. 1820–1826, Apr. 2006.

    Article  Google Scholar 

  6. K. Y. Yazdandoost and K. Sayrafian-Pour, “Channel model for body area network,” IEEE P802.15 Working Group for Wireless Personal Area Networks, IEEE P802.15-08-0780-02-0006, 12 Nov. 2008.

    Google Scholar 

Channel Models for Vehicular Networks

  1. J. Yin et al., “Performance evaluation of safety applications over DSRC vehicular ad hoc networks,” in Proc. VANET 2004, 1 Oct. 2004, pp. 1–9.

    Google Scholar 

  2. M. Toyota, R. K. Pokharel and O. Hashimoto, “Efficient multi-ray propagation model for DSRC EM environment on express highway,” Elec. Lett., vol. 40, no. 20, pp. 1278–1279, 30 Sep. 2004.

    Article  Google Scholar 

  3. G. Acosta-Marum and M. A. Ingram, “Six time- and frequency-selective empirical channel models for vehicular wireless LANs,” IEEE Veh. Technol. Mag., vol. 2, no. 4, pp. 4–11, Dec. 2007.

    Google Scholar 

  4. I. Sen and D. W. Matolak, “Vehicle-vehicle channel models for the 5-GHz band,” IEEE Trans. Intell. Transp. Syst., vol. 9, no. 2, pp. 235–245, Jun. 2008.

    Article  Google Scholar 

  5. I. Tan, W. Tang, K. Laberteaux and A. Bahai, “Measurement and analysis of wireless channel impairments in DSRC vehicular communications,” in Proc. IEEE ICC 2008, 19–23 May 2008, pp. 4882–4888.

    Google Scholar 

Channel Models for 60 GHz and Terahertz Systems

  1. P. Smulders, “60 GHz radio: Prospects and future directions,” in Proc. 10th IEEE Symp. Commun. Veh. Technol., Benelux, Nov. 2003, pp. 1–8.

    Google Scholar 

  2. R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel and T. Kürner, “Short-range ultra-broadband terahertz communications: Concepts and perspectives,” IEEE Antennas Propag. Mag., vol. 49, no. 6, pp. 24–39, Dec. 2007.

    Article  Google Scholar 

  3. C. Park and T. S. Rappaport, “Short-range wireless communications for next-generation networks: UWB, 60 GHz millimeter-wave WPAN and ZigBee,” IEEE Wireless Commun., vol. pp. 70–78, Aug. 2007.

    Google Scholar 

  4. T. Zwick, T. J. Beukema and H. Nam, “Wideband channel sounder with measurements and model for the 60 GHz indoor radio channel,” IEEE Trans. Veh. Technol., vol. 54, no. 4, pp. 1266–1277, Jul. 2005.

    Article  Google Scholar 

  5. S. K. Yong, “TG3c channel modeling sub-committee final report,” IEEE P802.15 Working Group for Wireless Personal Area Networks, Doc. No. IEEE 15-07-0584-01-003c, 13 Mar. 2007.

    Google Scholar 

  6. C. Jansen, R. Piesiewicz, D. Mittleman, T. Kürner and M. Koch, “The impact of reflections from stratified building materials on the wave propagation in future indoor terahertz communication systems,” IEEE Trans. Antennas Propag., vol. 56, no. 5, pp. 1413–1419, May 2008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Michelson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag US

About this chapter

Cite this chapter

Michelson, D.G., Ghassemzadeh, S.S. (2009). Measurement and Modeling of Wireless Channels. In: Tarokh, V. (eds) New Directions in Wireless Communications Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0673-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0673-1_1

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0672-4

  • Online ISBN: 978-1-4419-0673-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation