A relative role of comets versus asteroids in the bombardment of the inner planets remains questionable. The uncertainty originates from two main problems. The first is that we do not know with adequate accuracy the real sizes of the cometary nuclei that often look detectable with active comas. The second problem lies in the “fading” of comets; and it is important to value a portion of “dormant” comets in a total population of bodies whose orbits intersect with the Earth and planets. This chapter lays out the authors’ vision of the modern aspects of these problems

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abstract

  • Asher DJ, Stell DI ( (1998) On the possible relation between the Tunguska bolide and comet Encke. Planet Space Sci 46(2/3):205–211

    Article  ADS  Google Scholar 

  • Banaszkiewicz M, Rickman H (1996) Modeling of cometary evolution by kinetic theory: Method and first results. Earth Moon Planets 72:203–210

    Article  ADS  Google Scholar 

  • Biesecker DA, Lamy P, Llebaria A et al (2002) Sungrazing comets discovered with the SOHO/LASCO coronagraphs 1996–1998. Icarus 157:323–348

    Article  ADS  Google Scholar 

  • Bottke WF, Jedicke R, Morbidelli A et al (2000) Understanding the distribution of Near-Earth asteroids. Science 288:2190–2194

    Article  ADS  Google Scholar 

  • Bottke J, William F, Morbidelli A et al (2002) Debiased orbital and absolute magnitude distribution of the Near-Earth Objects. Icarus 156((2):399–433

    Article  ADS  Google Scholar 

  • Brandt JC, A’Hearn MF, Randall CE et al (1996) On the existence of small comets and their interactions with planets. Earth Moon Planets 72:243–249

    Article  ADS  Google Scholar 

  • Cochran AL, Levison HF, Stern SA et al (1995) The discovery of Halley-sized Kuiper belt objects using the Hubble space telescope. Astrophys J 455:342–346

    Article  ADS  Google Scholar 

  • Coradini A, Capaccioni F, Capria MT et al (1997) Transition elements between comets and asteroids. I. Thermal evolution models. Icarus 129:317–336

    Article  ADS  Google Scholar 

  • Davis DR, Farinella P (1997) Collisional evolution of Edgeworth-Kuiper Belt objects. Icarus 125:50–60

    Article  ADS  Google Scholar 

  • Dones L, Gladman B, Melosh HJ et al (1999) Dynamical lifetimes and final fates of small bodies: Orbit integrations vs opik calculations. Icarus. 142((2):509–524

    Article  ADS  Google Scholar 

  • Durda DD, Stern SA (2000) Collision rates in the present-day Kuiper Belt and Centaur regions: applications to surface activation and modification on comets, Kuiper Belt Objects, Centaurs, and Pluto-Charon. Icarus 145:220–229

    Article  ADS  Google Scholar 

  • Everhart E (1967) Intrinsic distributions of cometary perihelia and magnitudes. Astron. J 72:1002–1011

    Article  ADS  Google Scholar 

  • Farinella P, Davies ME (1996) Short-period comets: primordial bodies or collisional fragments? Science 273:938–941

    Article  ADS  Google Scholar 

  • Farinella P, Froeschle Ch, Froeschle C et al (1994) Asteroids falling onto the Sun. Nature 371:315–317

    Article  ADS  Google Scholar 

  • Fernandez JA, Gallardo T, Brunini AN (2002) Are there many inactive Jupiter-family comets among the Near-Earth asteroid population? Icarus 159:358–368

    Article  ADS  Google Scholar 

  • Fernandez JA, Rickman H, Kamel L (1992) The population size and distribution of perihelion distances of the Jupiter family. In: Fernandez JA, Rickman H (eds) Periodic comets. Universidad de la Republica, Facultad de Ciencias, Montevideo, Uruguay, pp 143–157

    Google Scholar 

  • Frank LA, Sigwarth JB, Craven JD (1986) On the influx of small comets into the earth’s upper atmosphere. I. Observations. II. Interpretation. Geophys Res Lett 13:303–310

    Article  ADS  Google Scholar 

  • Froeschle C, Hahn G, Gonczi R et al (1995) Secular resonances and the dynamics of Mars-crossing and Near-Earth asteroids. Icarus 117:45–61

    Article  ADS  Google Scholar 

  • Gladman B, Michel P, Froeschlé C (2000) The Near-Earth object population. Icarus 146:176–189

    Article  ADS  Google Scholar 

  • Ivanov BA, Neukum G, Wagner R (2001) Size-frequency distribution of planetary impact craters and asteroids. Collisional Processes in the Solar System. Marov MY, Rickman H (eds). Astrophys Space Sci Library 261. Kluwer Academic Publishers, Dordrecht, pp 1–34

    Google Scholar 

  • Jewitt D, Luu J, Chen J (1996) The Mauna Kea-Cerro-Tololo (MKCT) Kuiper Belt and Centaur Survey. Astronomical Journal 112:1225

    Article  ADS  Google Scholar 

  • Kresak L, Pittich EM (1978) The intrinsic number density of active long-period comets in the inner solar system. Bull Astronom Instit Czechoslovakia 29:299–309

    ADS  Google Scholar 

  • Kuzmitcheva MY, Ivanov BA (2002) Probable populations of projectiles for Galilean moons. Conference Asteroids, Comets, Meteors (ACM (2002). Berlin, July 29–August 2, 2002. Technical University Berlin. Berlin. Germany (ESA-SP-500), pp 851–853

    Google Scholar 

  • Levison HF, Duncan MJ (1994) The long-term dynamical behavior of short-period comets. Icarus 108:18–36

    Article  ADS  Google Scholar 

  • Levison HF, Duncan MJ (1997) From the Kuiper Belt to Jupiter-Family comets: the spatial distribution of ecliptic comets. Icarus 127:13–32

    Article  ADS  Google Scholar 

  • Levison HF, Morbidelli A, Dones L et al (2002) The mass disruption of Oort Cloud comets. Science 296:2212–2215

    Article  ADS  Google Scholar 

  • Licandro J, Tancredi G, Lindgren M et al (2000) CCD photometry of cometary nuclei, I: Observations from 1990–1995. Icarus 147:161–179

    Article  ADS  Google Scholar 

  • Marsden BG (1986) Catalogue of cometary orbits. Intern Astronom Union Circular 4168, 2

    ADS  Google Scholar 

  • Marsden B, Williams G (2003) Catalogue of cometary orbits. Smithsonian Astrophysical Observatory,p 169

    Google Scholar 

  • Nakamura T, Kurahashi H (1998) Collisional probability of periodic comets with the terrestrial hplanets—an invalid case of analytic formulation. Astronom J 115:848–854

    Article  ADS  Google Scholar 

  • Napier WM, Wickramasinghe JT, Wickramasinghe NC (2004) Extreme albedo comets and the impact hazard. Month Not R Astronom Soc 355:191–195

    Article  ADS  Google Scholar 

  • Nemchinov IV, Kosarev IB, Kovalev AT et al (2005) Impacts of comets onto the Sun and coronal mass ejections. Geophysical Research Abstracts 7, 04384. SRef-ID: 1607-7962/gra/EGU05-A-04384

    Google Scholar 

  • Rickman H, Fernandez JA, Gustafson BAS (1990) Formation of stable dust mantles on short-period comet nuclei. Astronom Astrophys 237:524–535

    ADS  Google Scholar 

  • Roemer E (1965) Observations of comets and minor planets. Astronom J 70:397–402

    Article  ADS  Google Scholar 

  • Roemer E (1966) The dimensions of cometary nuclei. In: Les Congres et Colloques de Universite de Liege. Colloque international tenu al’Universite de Liege 5,6 et 7 julliet 1965, 37:23–28

    Google Scholar 

  • Roemer E, Lloyd RE (1966) Observations of comets, minor planets, and satellites. Astronom J 71: 443–457

    Article  ADS  Google Scholar 

  • Roemer E, Thomas M, Lloyd RE (1966) Observations of comets, minor planets, and Jupiter VI H. Astronom J 71:591–601

    Article  ADS  Google Scholar 

  • Sekanina Z, Chodas PW (2004) Fragmentation hierarchy of bright sungrazing comets and the birth and orbital evolution of the Kreutz System. I Two-superfragment model. Astronom J 607((1):620–639

    ADS  Google Scholar 

  • Shoemaker EM, Wolf RF (1982) Cratering time scales for the Galilean satellites. In: Morrison D (ed) Satellites of Jupiter. University of Arizona Press, Tucson, pp 277–339

    Google Scholar 

  • Steel DI (1993) Collisions in the solar system. V – Terrestrial impact probabilities for parabolic comets. Monthly Notices of the Royal Astronomical Society 264:813

    ADS  Google Scholar 

  • Stern SA, Weissman PR (2001) Rapid collisional evolution of comets during the formation of the Oort cloud. Nature 409:589–591

    Article  ADS  Google Scholar 

  • Tancredi G (1994) Physical and dynamical evolution of Jupiter family comets: Simulations based on the observed sample. Planet Space Sci 42:421–433

    Article  ADS  Google Scholar 

  • Tancredi G, Fernandez JA, Rickman H et al (2000) A catalog of observed nuclear magnitudes of Jupiter family comets. Astronom Astrophys Suppl Ser 146:73–90

    Article  ADS  Google Scholar 

  • Weidenschilling SJ (1997) The origin of comets in the Solar Nebula: a unified model. Icarus 127:290–306

    Article  ADS  Google Scholar 

  • Weissman PR, Dobrovolskis AR, Stern SA (1989) Constraints on impact rates in the Pluto-Charon system and the population of the Kuiper comet belt. Geophys Res Lett 16:1241–1244

    Article  ADS  Google Scholar 

  • Whipple FL (1972) On certain aerodynamic processes for asteroids and comets. In: From plasma to planet. Elvius A (ed) Wiley, New York, pp 211–232

    Google Scholar 

  • Wiegert P, Tremaine S (1999) The evolution of long-period comets. Icarus 137:84–121

    Article  ADS  Google Scholar 

  • Williams DR, Wetherill GW (1994) Size distribution of collisionally evolved asteroidal populations—analytical solution for self-similar collision cascades. Icarus 107:117–128

    Article  ADS  Google Scholar 

  • Zahnle K, Schenk P, Levison H et al (2003) Cratering rates in the outer Solar System. Icarus 163(2): 263–289

    Article  ADS  Google Scholar 

  • Zimbelman JR (1984) Planetary impact probabilities for long-period comets. Icarus 57:48–54

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 springer

About this chapter

Cite this chapter

Kuzmitcheva, M., Ivanov, B. (2008). Cometary Hazards. In: Adushkin, V., Nemchinov, I. (eds) Catastrophic Events Caused by Cosmic Objects. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6452-4_3

Download citation

Publish with us

Policies and ethics

Navigation