Main Factors of Hazards Due to Comets and Asteroids

  • Chapter
Catastrophic Events Caused by Cosmic Objects

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 99.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 99.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abate B, Koeberl C, Kruger FJ, Underwood JR Jr (1999) BP and Oasis impact structures, Libya, and their relation to Libyan desert glass. In: Dressler BO, Sharpton VL (eds) Large meteorite impacts and planetary evolution II. Geological Society of America Special Paper 339, pp 177–192

    Google Scholar 

  • Adams WM, Preston PG, Flanders PL et al (1961) Summary report of strong-motion measurements, underground nuclear detonations. J Geophys Res 66(3):903–942

    Article  ADS  Google Scholar 

  • Adushkin VV, Nemchinov IV (1994) Consequences of impacts of cosmic bodies on the surface of the Earth. In: Gehrels T (ed) Hazards due to comets and asteroids, University Arizona Press, Tucson, pp 721–778

    Google Scholar 

  • Adushkin VV, Zetzer JI, Kiselev YN et al (1993) Active geophysical rocket experiments in the ionosphere with the high velocity plasma jet injection. Doklady RAS 331(4):486–489

    Google Scholar 

  • A’Hearn MF and The deep impact science team. (2006) Deep impact: excavating comet tempel 1. Lunar Planet Sci XXXVII. LPSI, Houston. #1978.pdf

    Google Scholar 

  • A’Hearn MF, Belton MJS, Delamere WA et al (2005) Deep impact: excavating comet tempel 1. Science 310(5746):258–64

    Article  ADS  Google Scholar 

  • Ahrens TJ, Harris AW (1992) Deflection and fragmentation of near-Earth asteroids. Nature 360:429–433

    Article  ADS  Google Scholar 

  • Ahrens TJ, Harris AW (1994) Deflection and fragmentation of near-Earth asteroids. In: Gehrels T (ed) Hazards due to comets and asteroids. University of Arizona Press, Tucson, pp 897–927

    Google Scholar 

  • Ahrens TJ, O’Keefe J (1987) Impact on the Earth, ocean and atmosphere. Int J Impact Engng 5(1–4):13–32

    Article  ADS  Google Scholar 

  • Ahrens TJ, O’Keefe J, Lange M (1989) Formation of atmospheres during accretion of the terrestrial planets. In: Atreya SK, Pollack JB, Matthews MS (eds) Origin and evolution of planetary and satellite atmospheres. University of Arizona Press, Tucson, pp 328–385

    Google Scholar 

  • Alimov RA, Dmitriev EV, Ivanov BA, Nemtchinov IV (1995) Defense against small asteroids: priority tasks. Proceedings of Planetary Defense Workshop, Livermore, CA, LLNL CONF-9505266, pp 465–469

    Google Scholar 

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208(4448):1095–1108

    Article  ADS  Google Scholar 

  • Anderson JLB, Schultz PH, Heineck JT (2003) Asymmetry of ejecta flow during oblique impacts using three-dimensional particle image velocimetry. J Geophys Res 108 (E8). 5094, doi:10.1029/2003JE002075

    Article  Google Scholar 

  • Andrianov SA, Vasil’chenko II, Golitsyn GS et al (2003) Numerical modeling of “fire storm” formation. Izvestiya, Atmospheric Oceanic Phys 39(1):3–13

    MathSciNet  Google Scholar 

  • Arkhipov VN, Borisov VA, Budkov AM et al (2002) Mechanical action of nuclear explosions. Fizmatlit, Moscow. (in Russian), p 384

    Google Scholar 

  • Arkhipov VN, Krasnov SA, Smirnov EI et al (1997) Mechanical effects of nuclear explosion in the ground huge tracts. In: Physics of nuclear explosion. Vol 1. Development of explosion. Physical and Mathematical Literature Publishing Company, Moscow, pp 159–242 (in Russian)

    Google Scholar 

  • Artem’ev VI, Bergel’con VI, Kalmykov AA et al (1988) Development of a forerunner in interaction of s shock wave with a layer of reduced pressure. Fluid Dynamics 2:290–295 (Trans from Izvestiya

    Article  Google Scholar 

  • Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza 2:158–163)

    Google Scholar 

  • Artem’ev VI, Bergel’con VI, Nemchinov IV et al (1989) Formation of a new structure of gasdynamic flows at density perturbations in thin elongate channels ahead of shock wave fronts. Mat Model 1(8):1–11 (in Russian)

    MathSciNet  Google Scholar 

  • Artem’ev VI, Markovich IE, Nemchinov IV, Sulyaev VA (1987) Two-dimensional, self-similar motion of a strong shock wave along a heated surface. Sov Phys Dokl 32(4):245–246. (Trans Dokl Akad Nauk SSSR 293(5):1082–1084)

    Google Scholar 

  • Artemieva NA, Shuvalov VV (2002) Shock metamorphism on the ocean floor (numerical simulations). Deep-sea research. Part II. Topical studies in oeanography 49(6):959–968

    Article  ADS  Google Scholar 

  • Asphaug E, Ryan EV, Zuber MT (2002) Asteroid interiors. In: Bottke W, Gellino A, Paolicchi P, Binzel RP (eds) Asteroids III University of Arizona Press, Tucson, pp 463–484

    Google Scholar 

  • Atkinson H, Tickell C, Williams D (2000) Report on the task force on potentially hazardous. In: Near Earth Objects. British National Space Center, London (available online at http:// www.nearearthobject.co.uk)

    Google Scholar 

  • Baldwin B, Sheafler Y (1971) Ablation and breakup of large meteoroids during atmospheric entry. J Geophys Res 76:4653–4668

    Article  ADS  Google Scholar 

  • Benz W, Asphaug E (1999) Catastrophic disruptions revisited. Icarus 142:5–20

    Article  ADS  Google Scholar 

  • Bergel’son VI, Nemchinov IV, Orlova TI et al (1987) Self-similar development of a precursor in front of a shock wave interacting with a thermal layer. Sov Phys Dokl 32(9):691–692. (Trans Dokl Akad Nauk SSSR 296(3):554–557)

    Google Scholar 

  • Bergel’son VI, Nemchinov IV, Orlova TI, Khazins VM (1989) Self-similar flows upon instantaneous energy release in a gas containing channels of reduced density. Sov Phys Dokl 34(4):350–352. (Trans Dokl Akad Nauk SSSR 305(5):1100–11037)

    Google Scholar 

  • Biberman LM, Bronin SYa, Brykin MV (1980) Moving of a blunt body through the dense atmosphere under conditions of severe aerodynamic heating and ablation. Acta Astronom 7:53–65

    Article  ADS  Google Scholar 

  • Binzel RP (2000) The Torino impact hazard scale. Planet Space Sci 48:297–303

    Article  ADS  Google Scholar 

  • Boslough MB, Crawford DA (1997) Shoemaker-Levy 9 and plume-forming collisions on Earth. In: Remo JL (ed) Near Earth objects. Ann NY Acad Sci 822:236–282

    Article  ADS  Google Scholar 

  • Boslough MB, Crawford DA, Robinson AC, Trucano TG (1994) Mass and penetration depth of Shoemaker-Levy 9 fragments from time resolved photometry. Geophys Res Lett 21(14):1555–1558

    Article  ADS  Google Scholar 

  • Bottke WF Jr, Melosh HJ (1996) Binary asteroids and the formation of doublet craters. Icarus 124:372–391

    Article  ADS  Google Scholar 

  • Britt DT, Consolmagno GJ (2001) Modeling the structure of high porosity asteroids. Icarus 152(1):134–139

    Article  ADS  Google Scholar 

  • Britt DT, Yeomans D, Housen K, Consolmagno G (2002) Asteroid density, porosity, and structure. In: Bottke W, Cellino A, Paolicchi P, Binzel RP (eds) Asteroids III. University of Arizona Press, Tucson, pp 485–500

    Google Scholar 

  • Brode HL (1955) Numerical solution of spherical blast waves. J Appl Phys 26(6):766–775

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Brown PG, Spalding RE, ReVelle DO et al (2002) The flux of small near-Earth objects colliding with the Earth. Nature 420(6913):294–296

    Article  ADS  Google Scholar 

  • Campo Bagatin A, Petit J-M, Farinella P (2001) How many rubble piles are in the asteroid belt? Icarus 149:198–209

    Google Scholar 

  • Canavan GH, Solem LC, Rather JDG (1994) Near-Earth object interception workshop. In: Gehrels T (ed) Hazards due to comets and asteroids. University of Arizona Press, Tucson, pp 93–124

    Google Scholar 

  • Carlson RW, Weissman PR, Segura M et al (1995) Galileo infrared observations of the Shoemaker-Levy 9 G impact fireball: a preliminary report. Geophys Res Lett 22(12):1557–1560

    Article  ADS  Google Scholar 

  • Carrier GF, Moran W, Birks J et al (1985) The effects on the atmosphere of a major nuclear exchange. National Academic Press, Washington, DC

    Google Scholar 

  • Carusi A, Gehrels T, Helin EF et al (1994) Near-Earth objects: present search programs. In: Gehrels T (ed) Hazards due to comets and asteroids. University of Arizona Press, Tucson, pp 127–148

    Google Scholar 

  • Chapman CR (2002) Cratering on asteroids from Galileo and NEAR Shoemaker. In: Bottke W, Cellino A, Paolicchi P, Binzel RP (eds) Asteroids III. University of Arizona Press, Tucson, pp 315–330

    Google Scholar 

  • Chapman CR, Morrison D (1994) Impacts on the Earth by asteroids and comets: assessing the hazard. Nature 367:33–40

    Article  ADS  Google Scholar 

  • Chapman CR, Durda DD, Gold RE (2001) The comet/asteroid impact hazard: a system approach. White paper on impact hazard. http:/www.boulder.swri.edu/clark/neowp.html

    Google Scholar 

  • Chapman CR, Merline WJ, Klaasen K et al (1995) Preliminary results of Galileo direct imaging of S-L 9 impacts. Geophys Res Lett 22(12):1561–1564

    Article  ADS  Google Scholar 

  • Chesley SR, Ward SN (2005) A quantitative assessment of the human and economic hazard from impact-generated tsunami. http://www.es.ucsc.edu/∼ward/papers/tsunami_ (v43).pdf

    Google Scholar 

  • Chyba CF, Thomas PJ, Zahnle KJ (1993) The 1908 Tunguska explosion: atmospheric disruption of a stony asteroid. Nature 361(6407):40–44

    Article  ADS  Google Scholar 

  • Collins GS, Melosh HJ, Marcus R (2005) Earth impact effects program: A web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteoritics and Planetary Science 40(6):817–840, web site: www.lpl.arizona.edu/ImpactEffects

    Google Scholar 

  • Covey C, Ghan SJ, Walton JJ, Weissman PR (1990) Global environmental effects of impact-generated aerosols: results from a general circulation model. In: Sharpton VL, Ward PD (eds) Global catastrophes in Earth history. Geological Soc of America Special Paper 247, Boulder, CO, pp 263–270

    Google Scholar 

  • Crawford DA (1996) Models of fragment penetration and fireball evolution. In: Noll KS, Weaver HA, Feldman PD (eds) The collision of Comet Shoemaker-Levy 9 and Jupiter. Cambridge University Press, Cambridge, pp 133–156

    Google Scholar 

  • Crawford DA (1997) Comet Shoemaker-Levy 9 fragment size estimates: How big was the parent body. In: Remo JL (ed) Near-Earth Objects. Ann NY Acad Sci 822:155–173

    ADS  Google Scholar 

  • Croft SK (1982) A first-order estimate of shock heating and vaporization in oceanic impacts. In: Silver LT, Schultz PH (eds) Geological implications of impacts of large asteroids and comets on the Earth. Geol Soc Am Special Paper 190, pp 143–152

    Google Scholar 

  • Erlandson RE, Meng CI, Zetzer JI (2004a) Introduction to the North star active plasma-jet space experiment. J Spacecraft and Rockets 41(4):481–482

    Article  ADS  Google Scholar 

  • Erlandson RE, Meng C-I, Swaminathan PK et al (2004b) North star Plasma-jet space experiment. J Spacecraft and Rockets 41(4):483–489

    Article  ADS  Google Scholar 

  • Erlandson RE, Meng C-I, Zetzer JI et al (2002) The APEX North star experiment: Observations of high-speed plasma jets injected perpendicular to the magnetic field. Adv Space Res 29(9):1317–1326

    Article  ADS  Google Scholar 

  • Ernst CM, Schulz PH, A’Hearn MF, the Deep Impact Science Team (2006) Photometric evolution of the Deep Impact flash. Lunar Planet Sci XXXVII. LPSI. Houston. # 2192.pdf

    Google Scholar 

  • Fujii Y, Matsu’ura M (2000) Regional difference in scaling lows for large earthquakes and its tectonic implication. Pure Appl Geophys 157:2283–2302

    Article  ADS  Google Scholar 

  • Gaskell R, Saito J, Ishiguro M et al (2006) Global topography of asteroid 25143 Itokawa. Lunar Planet Sci XXXVII. LPSI, Houston. #1876.pdf

    Google Scholar 

  • Gault DE, Sonnet CP (1982) Laboratory simulations of pelagic asteroidal impact: Atmospheric injection, benthic topography, and the surface radiation field. In: Silver LT, Shultz PH (eds) Geological implications of impacts of large asteroids and comets on the Earth. Geological Society of America Special Paper 190, pp 69–92

    Google Scholar 

  • Gavrilov BG, Podgorny AI, Podgorny IM et al (1999) Diamagnetic effect produced by the Fluxus-1 and -2 artificial plasma jet. Geophys Res Lett 26(11):1549–1552

    Article  ADS  Google Scholar 

  • Gavrilov BG, Podgorny IM, Sobyanin DB et al (2004) North Star Plasma-jet experiment particles and electric and magnetic field measurements. J Spacecraft and Rockets 41(4):490–495

    Article  ADS  Google Scholar 

  • Gehrels T (1991) Scanning with charge-coupled devices. Space Sci Rev 58:347–375

    Article  ADS  Google Scholar 

  • Gehrels T (ed) (1994) Hazards due to comets and asteroids. University of Arizona Press, Tucson, p 1300

    Google Scholar 

  • Glasstone S, Dolan PJ (1977) The effects of nuclear weapons. US department of defense and US Department of Energy, US government printing office, Washington, DC, p 653

    Google Scholar 

  • Gossard EA, Hook W (1975) Waves in the atmosphere. Elsevier, Amsterdam

    Google Scholar 

  • Grigoryan SS (1979) On the motion and disruption of meteorites in planetary atmospheres. Kosm Issled 17(6):875–893

    ADS  Google Scholar 

  • Gurley JG, Dixon WJ, Meissinger H (1994) Vehicle systems for missions to protect the Earth against NEO impacts. In: Gehrels T (ed) Hazards due to Comets and Asteroids, University Arizona Press, Tucson, pp 1035–1063

    Google Scholar 

  • Gutenberg B, Richter C (1954) Seismicity of the Earth and associated phenomena. 2nd. edn. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Hammel HB, Beebe RF, Ingersoll AP et al (1995) HST imaging of atmospheric phenomena created by the impact of Comet Shoemaker-Levy 9. Science 267:1288–1296

    Article  ADS  Google Scholar 

  • Harris AW (1996) The rotation rates of very small asteroids: evidence for “rubble pile” structure. Lunar Planet Sci XXVII. LPSI, Houston, pp 493–494

    Google Scholar 

  • Harris AW, Canavan GH, Sagan C, Ostro SJ (1994) The deflection dilemma: use versus misuse of technologies for avoiding interplanetary collision hazards. In: Gehrels T (ed) Hazards due to comets and asteroids. University of Arizona Press, Tucson, pp 1145–1155

    Google Scholar 

  • Hartmann WK, Farinella P, Vokrouhlický D et al (1999) Reviewing the Yarkovsky effect: new light on the delivery of stone and iron meteorites from the asteroid belt. Meteoritics and Planetary Sci 34:A161–A167

    Article  ADS  Google Scholar 

  • Hazins VM, Svetsov VV (1993) A conservative stable smoothness-enhancing Free-Lagrangion method. J Comput Phys 105(2):187–198

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Helin EF, Shoemaker EM (1979) The Palomar planet-crossing asteroid survey, 1973–1978

    Google Scholar 

  • Hills JG, Goda MP (1993) The fragmentation of small asteroids in the atmosphere. Astronom J 105(3):1114–1144

    Article  ADS  Google Scholar 

  • Hills JG, Mader Ch L (1995) Tsunami produced by the impacts of small asteroids Proceedings of the Planetary Defense Workshop. University of California, Lawrence Livermore National Laboratory. Livermore, California, pp 67–76

    Google Scholar 

  • Hills JG, Nemchinov IV, Popov SP, Teterev AV (1994) Tsunami generated by small asteroid impacts. In: Gehrels T (ed) Hazards due to comets and asteroids, University of Arizona Press, Tucson, pp 779–789

    Google Scholar 

  • Hilton JL (2002) Asteroid masses and densities. In: Bottke W, Cellino A, Paolicchi P, Binzel RP (eds) Asteroids III. University of Arizona Press, Tucson, pp 103–112

    Google Scholar 

  • Holsapple KA, Schmidt RM (1982) On the scaling of crater dimensions. II. Impact processes. J Geophys Res 87:1849–1870

    ADS  Google Scholar 

  • Holsapple KA, Schmidt RM (1987) Point source solutions and coupling parameters in cratering mechanics. J Geophys Res 92:6350–6376

    Article  ADS  Google Scholar 

  • Holsapple KA, Giblin I, Housen K. et al (2002) Asteroid impacts: Laboratory experiments and scaling laws. In: Bottke W, Gellino A, Paolicchi P, Binzel RP (eds) Asteroids III, University Arizona Press, Tucson, pp 443–462

    Google Scholar 

  • Hord CW, Pryor WR, Stewart AIF et al (1995) Direct observation of the Comet Shoemaker-Levy 9 fragment G impact by Galileo UVS. Geophys Res Let. 22(12):1565–1568

    Article  ADS  Google Scholar 

  • Ivanov KG (1961) Geomagnetic phenomena observed at Irkutsk Magnetic Observatory after explosion of the Tunguska meteorite. Meteoritika 21:46–48. Nauka Publishers. Moscow (in Russian)

    Google Scholar 

  • Ivanov BA (1992) Geomechanical models of impact cratering: Puchezh-Katunki Structure. International Conference on Large Meteorite Impacts and Planetary Evolution. August 31–September 2, 1992. LPI Contribution 790. Sudbury, Ontario, Canada, pp 40

    Google Scholar 

  • Ivanov BA (2004) Multi-ring basins: modelling terrestrial analogs. 40th Vernadsky/Brown Microsymposium on Comparative Planetology. October 11–13, 2004. Vernadsky Inst, Moscow, Russia. CD ROM, #30

    Google Scholar 

  • Ivanov BA, Bazilevsky A, Krynckov V, Chernaya I (1986) Impact craters on Venus: analysis of Venera 15 and 16 date. J Geophys Res 91:D423–D430

    Article  Google Scholar 

  • Johnson GW, Higgins GH, Violet CE (1959) Underground nuclear detonations. J Geophys Res 64(10):1457–1470

    Article  ADS  Google Scholar 

  • Jones EM, Kodis J (1982) Atmospheric effects of large body impacts: The first few minutes. Geological implications of impacts of large asteroids and comets on the Earth. Silver LT, Schultz PH (eds) Geological Society of America, Special Paper 190, pp 175–186

    Google Scholar 

  • Jones EM, Sanford M, II Jr (1977) Numerical simulation of a very large explosions at the Earth’s surface with possible application to tektites. In: Roddy DJ (ed) Impact and erosion cratering. Pergamon Press, New York, pp 1009–1024

    Google Scholar 

  • Kasahara K (1981) Earthquake mechanics. Cambridge Earth Science Series. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Keller HU, Jorda L, Küppers M et al (2005) Deep Impact Observations by OSIRIS onboard the Rosetta Spacecraft. Science 310(5746):281–283

    Article  ADS  Google Scholar 

  • Klumov BA, Kim VV, Lomonosov IV et al (2005) Deep impact experiment: possible observable effects. Physics-Uspekhi 48(7):733–742

    Article  ADS  Google Scholar 

  • Kocharyan GG, Spivak AA (2003) The dynamics of rock massifs divided into blocks. PBMC “Akademkniga”, Moscow, p 423 (in Russian)

    Google Scholar 

  • Kondratiev VH, Burlakov K Yu, Gritsai VN et al (1997) EMI of the high-altitude nuclear explosion. Physics of nuclear explosion 1. Development of explosion. In: Physical and Mathematical Literature Publishing Company, Moscow, pp 414–462 (in Russian)

    Google Scholar 

  • %Korobeinikov VP, Chushkin PI, Shurshalov LV (1991) Combined %simulation of the flight and explosion of a meteoroid in the %atmosphere. Solar System Res 25(3):242–254

    ADS  Google Scholar 

  • Korobeinikov VP, Khristoforoff BD (1976) Underwater explosion. Publications in Science and Technology Hydrodynamics 9, pp 54–119. VINITI, Moscow (in Russian)

    Google Scholar 

  • Koryak AI, Starchikova SL (1997) Seismic explosive waves-underground structures interaction. In: Physics of nuclear explosion. vol 2. Effects of explosion. Physical and Mathematical Literature Publishing Company, Moscow, pp 46–66 (in Russian)

    Google Scholar 

  • Korycansky DG, Lynett PJ (2005) Offshore breaking of impact tsunami: The Van Dorn effect revisited. Geophys Res Lett 32, L10608, doi:10.1029/2004GL021918

    Article  ADS  Google Scholar 

  • Kosarev IB, Nemchinov IV (1994) The ionized luminous column created during the flight of a comet through Jovian atmosphere. Lunar Planet Sci Conference XXV. Houston, pp 731–732

    Google Scholar 

  • Kostyuchenko VN, Rodionov V, Sultanov D (1974) Seismic waves of underground nuclear explosions. In: Peaceful nuclear explosions III. IAEA. Vena, pp 447–461

    Google Scholar 

  • Kovalev AT, Nemtchinov IV, Shuvalov VV (2004) Ionospheric and magnetospheric disturbances by impacts of small asteroids and comets. In: Dinamika vzaimodeistvuyushchikh geosfer. Sbornik nauchnykh trudov (Dynamics of interacting geospheres). Trans IDG RAS, Moscow, pp 245–257

    Google Scholar 

  • Kovalev A, Nemchinov I, Zetzer Yu (2006) Magnitospheric and ionospheric disturbances caused by cosmic body impacts. In: Geophys Res Abstr 8, 04505. SRef-ID: 1607-7962/gra/EGU06-A-04505

    Google Scholar 

  • Krasnopevtseva GV, Shchukin YK (2004) Seismic models of the Earth’s crust and mantle of the North Eurasia. In: Dynamics of interacting geospheres. Trans Inst Geospheres Dynamics RAS, pp 159–173 (in Russian)

    Google Scholar 

  • Krinov EL (1981) Zheleznyi dozhd’ (Iron shower). Nauka, Moscow, p 192

    Google Scholar 

  • Krinov EL, Fonton SS (1959) Description of meteoritic funnels, depressions, and fall sites of small individual surface-scattering samples. In: Sikhote-Alin’skii zheleznyi meteoritnyi dozhd’ (Sikhote-Alin Iron Meteoritic Shower) 1. Izd Akad Nauk SSSR, Moscow, pp 157–303

    Google Scholar 

  • Kuvshinnikov VM, Pan’kov VI, Shvedov AA (1997) Electromagnetic impulse of the on-the-ground nuclear explosion. In: Physics of nuclear explosion. Vol 1 Development of explosion. Physical and Mathematical Literature Publishing Company, Moscow, pp 85–119 (in Russian)

    Google Scholar 

  • Kuznetsov NM (1965) Thermodynamic functions and impact adiabatic curves of air at high temperatures. Mashinostroenie, Moscow (in Russian)

    Google Scholar 

  • Latham GV, McDonald WG, Moore HJ (1970) Missile impacts as sources of seismic energy on the moon. Science 168(3928):42–45

    Google Scholar 

  • Levin BV, Nosov MA (2005) Phhisics of tsunamis and kindred phenomena in ocean. Yanus-K Pub Co, Moscow (in Russian) p 360

    Google Scholar 

  • Lomnitz C, Nilsen-Hofseth S (2005) The Indian Ocean disaster: tsunami physics and early warning dilemmas. EOS Trans AGU 86(7):65, 70

    Article  ADS  Google Scholar 

  • Love SG, Ahrens TJ (1996) Catastrophic impacts on gravity dominated asteroids. Icarus 124:141–155

    Article  ADS  Google Scholar 

  • Maccone C (2006) Planetary defense from Space: Part 2 (Simple) asteroid deflection law. Acta Astronautica 58(12):662–670

    Article  ADS  Google Scholar 

  • Mader CL (1988) Numerical modeling of water waves. University of California Press, Berkeley

    Google Scholar 

  • Mader CL (1991) Modeling Hilo. Hawai tsunami inundations. Sci Tsunami Hazards 9:85–94

    Google Scholar 

  • Marsden BG, Steel DI (1994) Warning times and impact probabilities for long-period comets. In: Gehrels T (ed) Hazards due to comets and asteroids. University of Arizona Press, Tucson, pp 221–240

    Google Scholar 

  • Martin TZ, Orton GS, Travis LD et al (1995) Observations of Shoemaker-Levy impacts by the Galileo photopolarimeter radiometer. Science 268, pp 1875–1878

    Article  ADS  Google Scholar 

  • Maruya M, Ohyama H, Uo M et al (2006) Modeling and analyzing Itokawa topography for Hayabusa touchdown and sample collection. Lunar Planet Sci XXXVII. LPSI, Houston. #1702. pdf

    Google Scholar 

  • Masaitis VL, Danilin AN, Mashchak MS et al (1980) The geology of astroblemes. Nedra Press, Leningrad, Russia, p 231 (in Russian)

    Google Scholar 

  • Masaitis VL (ed) Mashchak MS, Raikhlin AI et al (1998) Diamond-bearing impactites of the Popigai astrobleme. VSEGEI-Press, St Petersburg, p 179 (in Russian)

    Google Scholar 

  • McInnes CR (2004) Deflection of near-Earth asteroids by kinetic energy impacts from retrograde orbits. Planet Space Sci 52:587–590

    Article  ADS  Google Scholar 

  • McGarr A, Latham GV, Gault DE (1969) Meteoroid impacts as sources of seismicity on the Moon. J Geophys Res 74(25):5981–5994

    Article  ADS  Google Scholar 

  • McGlaun JM, Thompson SL, Elrick MG (1990) CTH: a three-dimensional shock wave physics code. Int J Impact Engng 10:351–360

    Article  Google Scholar 

  • Melnikov NN, Konoukhin BP, Naumov VA (1992) Underground nuclear power stations. Cola Sci Center RAS Publ Co Apatiti 136 (in Russian)

    Google Scholar 

  • Melosh HJ (1981) Atmospheric breakup of terrestrial impactors. In: Schultz PH, Merrill RB (eds) Multi-ring basins. Pergamon Press, New York, pp 29–35

    Google Scholar 

  • Melosh HJ (1989) Impact cratering: A geologic process (Oxford Monographs on Geology and Geophysics, No. 11). Clarendon Press, Oxford University Press, New York, p 245

    Google Scholar 

  • Melosh HJ (2000) A New and improved equation of state for impact studies. Lunar Planet Sci XXXI. LPSI, Houston. #1903

    Google Scholar 

  • Melosh HJ (2003) Impact-generated tsunami: an over-rated hazard. Lunar Planet Sci XXXIV. LPSI, Houston.

    Google Scholar 

  • Melosh HJ, Collins GS (2005) Planetary science: meteor crater formed by low-velocity impact. Nature 434:157

    Google Scholar 

  • Melosh HJ and the Deep Impact Team (2006) Deep Impact: the first second. Lunar Planetary Science XXXVII. LPSI, Houston. #1165. pdf

    Google Scholar 

  • Melosh HJ, Nemtchinov IV (1993) Solar asteroid diversion. Nature 366(6450):21–22

    Article  ADS  Google Scholar 

  • Melosh HJ, Ryan EV (1997) Asteroids: Shattered but not dispersed. Icarus 129:562–564

    Article  ADS  Google Scholar 

  • Melosh HJ, Vickery AM (1991) Melt droplet formation in energetic impact events. Nature 350:494–497

    Article  ADS  Google Scholar 

  • Melosh HJ, Artemjeva NA, Golub AP et al (1993) Remote visual detection of impacts on the lunar surface. Lunar Planet Science Conference XXIV. Houston, pp 975–976

    Google Scholar 

  • Melosh HJ, Nemtchinov IV, Zetzer Yu.I (1994) Non-nuclear strategies for deflecting comets and asteroids. In: Gehrels T (ed) Hazards due to comets and asteroids. University Arizona Press, Tucson, pp 1111–1132

    Google Scholar 

  • Melosh HJ, Schneider NM, Zahnle KJ, Latham D (1990) Ignition of global wildfires at the Cretaceous/Tertiary boundary. Nature 343:251–254

    Article  ADS  Google Scholar 

  • Milani A, Valsecchi A, Paolicchi P et al (2003) Near Earth Objects space mission preparation: Don Quijote mission executive summary. ESA Study Contract No. 26252/02/F/IZ. DEIMOS Space S.L

    Google Scholar 

  • Mirels H (1988) Interaction of moving shock with thin stationary thermal layer. Proceedings of the 16th International Symposium on Shock Tubes and Waves. Gönig H (ed) Aachen, Germany, July 26–31, 1987. VCH, Weinheim, NY, pp 177–183

    Google Scholar 

  • Morrison D, Chapman CR, Slovic P (1994) The impact hazard. In: Gehrels T (ed) Hazards due to comets and asteroids. University of Arizona Press, Tucson, pp 59–92

    Google Scholar 

  • Morrison D, Harris AW, Sommer G et al (2002) Dealing with the impact hazard. In: Bottke W, Gellino A, Paolicchi P, Binzel RP (eds)Asteroids III. University of Arizona Press, Tucson, pp 739–754

    Google Scholar 

  • National Research Council (1985) The effects on the atmosphere of a major nuclear exchange. National Academy Press, Washington, DC

    Google Scholar 

  • Nemchinov IV, Svetsov VV (1991) Global concequences of radiation impulse caused by comet impact. Adv Space Res 11(6):(6)95–(6)97

    Article  ADS  Google Scholar 

  • Nemchinov IV, Tsikulin MA (1963) Estimate of heat transfer by radiation for large teorites moving in the atmosphere with high velocity. Geomagn Aeronom 3(4):635–646

    Google Scholar 

  • Nemtchinov IV, Losseva TV, Merkin VG (1999) Estimate of geomagnetic effect at a falling of Tunguska meteoroid. In: Physical processes in geospheres: their developments and interacting (Geophysics of the strong disturbances). Trans Inst Dynamics Geospheres RAS Moscow, pp 324–338 (in Russian)

    Google Scholar 

  • Nemtchinov IV, Loseva TV Teterev AV (1996) Impacts into oceans and seas. Earth Moon Planets 72(1–3):405–418

    Google Scholar 

  • Nemchinov IV, Popov S, Teterev A (1993a) Tsunamis caused by the impact of cosmic bodies in oceans or seas. In: Hazards due to comets and asteroids. University of Arizona Press, Tucson, p 64

    Google Scholar 

  • Nemchinov IV, Alexandrov PE, Artemiev VI et al (1993b) On magnetodynamic effects initiated by a high-speed impact of a large cosmic body upon the Earth’s surface. Lunar Planetary Science Conference XXIV, Houston, pp 1063–1064

    Google Scholar 

  • Nemchinov IV, Popova M, Shubadeeva L et al (1993c) Effects of hydrodynamics and thermal radiation in the atmosphere after comet impacts. Lunar Planetary Science Conference XXIV. Houston, pp 1067–1068

    Google Scholar 

  • Nemtchinov IV, Shuvalov VV, Artem’eva NA et al (1998) Light flashes caused by meteoroid impacts on the lunar surface. Solar System Res 32(2):116–132

    Google Scholar 

  • Nemtchinov IV, Shuvalov VV, Kosarev IB et al (1997a) Assessment of comet Shoemaker-Levy 9 fragment sizes using light curves measured by Galileo spacecraft instruments. Planet Space Sci 45(3):311–326

    Article  ADS  Google Scholar 

  • Nemtchinov IV, Svetsov VV, Kosarev IB et al (1997b) Assessment of kinetic energy of meteoroids detected by satellite-based light sensors. Icarus 130(2):259–274

    Article  ADS  Google Scholar 

  • Nemchinov IV, Orlova TI, Svettsov VV, Shuvalov VV (1976) On the role of radiation in the motion meteoroids with very high velocities in the atmosphere. Dokl. Akad. Nauk SSSR, 231(5):1084–1087

    ADS  Google Scholar 

  • Nemtchinov IV, Popova OP, Shuvalov VV, Svettsov VV (1994) Radiation emitted during the flight of asteroids and comets through atmosphere. Planet Space Sci 42(6):491–506

    Article  ADS  Google Scholar 

  • Nemchinov IV, Zetzer Yu.I, Kovalev AT, Shuvalov VV (2005) Ionospheric and magnetospheric disturbances caused by impacts of small asteroids and comets. In: 2005 AGU Fall Meeting. EOS Trans AGU, 86(52) Suppl NG23C–0106

    Google Scholar 

  • Neukum G, Hahn G, Denk T et al (1995) The collision Comet Shoemaker-Levy 9 with Jupiter as seen by the Galileo Imaging Experiment: modeling and interpretation of the bolide and explosion phase. Proceedings of the European SL-9/Jupiter Workshop West R, Böhnhardt H (eds) ESO Headquarters, Garching bei München, Germany, pp 63–68

    Google Scholar 

  • Nickolson PD (1996) Earth-based observations of impact phenomena. In: Noll KS, Weaver HA, Feldman PD (eds) The collision of Comet Shoemaker-Levy 9 with Jupiter. Cambridge University Press, Cambridge, pp 81–109

    Google Scholar 

  • Niemi NA, Wernicke BP, Friedrich AM et al (2004) BARGEN continuous GPS data across the eastern Basin and Range province, and implications for fault system dynamics. Geophys J Intern 159(3):842–862

    Article  ADS  Google Scholar 

  • Nifontov BI, Protopopov DD, Sitnikov IE, Kulikov AV (1965) Underground nuclear explosions. Atomisdat, p 160 (in Russian)

    Google Scholar 

  • O’Keefe JD, Ahrens TJ (1982a) Cometary and meteorite swarm impact on planetary surfaces. J Geophys Res 87:6668–6680

    Article  ADS  Google Scholar 

  • O’Keefe JD, Ahrens TJ (1982b) The interaction of the Cretaceous/Tertiary extinction bolide with the atmosphere, ocean, and solid Earth. In: Silver LT Schultz PH (eds) Geological implications of impacts of large asteroids and comets on the Earth. Geological Soc. of America Special Paper 190, pp 103–120

    Google Scholar 

  • Olsen KH, Stewart JN, McNeil JE, Vitousek MJ (1972) Long-period water-wave measurements for the MILROW and CANNIKIN nuclear explosions. Bull Seism Soc Amer 62(6):1559–1578

    Google Scholar 

  • Ortiz JL, Sada PV, Bellot Rubio LR et al (2000) Optical detection of meteoroidal impacts on the Moon. Nature 405(6789):921–923

    Article  ADS  Google Scholar 

  • Paillou P, Rosenqvist A, Malezieux J.-M et al (2003) Discovery of a double impact crater in Libya: the astrobleme of Arkenu. C. R. Geoscience 335:1059–1069

    Article  Google Scholar 

  • Pevzner LA, Kirjakov A, Vorontsov A et al (1992) Vorotilovskay drillhole: First deep drilling in the central uplift of large terrestial impact crater. Lunar Planetary Science Conference XXIII. Houston, pp 1063–1064vadjustpagebreak

    Google Scholar 

  • Pirrus EA, Tiyurma P (1987) Meteor craters of Estonia. XX All-Union Meteoritics Conf. Vernadsky Institute, Moscow, pp 3–4 (in Russian)

    Google Scholar 

  • Poag CW, Poppe LJ (1998) The Toms Canyon structure, New Jersey outer continental shelf a possible late Eocene impact crater. Marine Geol 145(1–2):23–60

    Article  Google Scholar 

  • Pravec P, Harris AW, Michalowski T (2002) Asteroid rotations. In: Bottke W, Gellino A, Paolicchi P, Binzel RP (eds) Asteroids III. University of Arizona Press, Tucson, pp 113–121

    Google Scholar 

  • Prescott JR, Robertson GB, Shoemaker C et al (2004) Luminiscence dating of the Waber meteorite craters, Saudi Arabia. J Geophys Res 109 (E1). E01008, doi:10.1029/2003JE002136

    Google Scholar 

  • Proceedings III International Conference on the Safety of Nuclear Power. Sept 1991 (1992) IAEA, Vienna

    Google Scholar 

  • Reichenbach H, Kuhl A (1988) Techniques for creating precursors in shock tubes. Proceedings of the 16th International Symposium on Shock Tubes and Waves. Grönig H (ed) Aachen, Germany, July 26–31, 1987. VCH, Weinheim, NY, pp 847–853

    Google Scholar 

  • Remo JL (ed) (1997) Near-Earth objects. The United Nations International Conference, 1995. Ann NY Acad Sci 822, p 632

    Google Scholar 

  • Richardson DC, Leinhardt ZM, Melosh HJ et al (2002) Gravitational aggregates: evidence and evolution. In: Bottke W, Cellino A, Paolicchi P, Binzel RP (eds) Asteroids III. University of Arizona Press, Tucson, pp 501–515

    Google Scholar 

  • Richardson JE, Melosh HJ (2006) Modeling the ballistic behavior of sold ejecta from the deep impact cratering event. Lunar Planet Sci XXXVII. LPSI, Houston. #1836. pdf

    Google Scholar 

  • Richardson JE, Melosh HJ, Artemeiva NA et al (2005) Impact cratering theory and modeling for the deep impact mission: from mission planning to data analysis. Space Sci Rev 117:241–267

    Article  ADS  Google Scholar 

  • Roddy DJ, Shuster S, Rosenblatt M et al (1987) Computer simulations of large asteroid impacts into oceanic and continental sites-preliminary results on atmospheric, cratering and ejecta dynamics. Int J Impact Engng 5(1–4):525–541

    Article  Google Scholar 

  • Rodean HC (1971) Nuclear-explosion seismology. University of California, U.S. AEC, Div of Technical Information. Livermore, Ca

    Google Scholar 

  • Rodionov VN, Adushkin VV, Kostychenko VN et al (1971) Mechanical effect of the underground nuclear explosions. Nedra, Moscow, p 224 (in Russisn)

    Google Scholar 

  • Rozov AL (1997) Nuclear burst loadings on hydroelectric station structures and consequences of their destruction. In: Physics of nuclear explosion. Vol 2. Effects of explosion. Physical and Mathematical Literature Publishing Company, Moscow, pp 67–78 (in Russian)

    Google Scholar 

  • Rustan PL (1994) Space Launsh vehicles. In: Gehrels T (ed) Hazards due to Comets and Asteroids. University Arizona Press, Tucson, pp 1065–1072

    Google Scholar 

  • Rybakov VA, Nemthinov IV, Shuvalov VV et al (1997) Mobilization of dust on the Mars surface by the impact of small cosmic bodies. J Geophys Res 102(E4):9211–9220

    Article  ADS  Google Scholar 

  • Sadovsky MA (2004) Selected works: Geophysics and Physics of Explosion Adushkin VV (ed) Nauka, Moscow, p 440

    Google Scholar 

  • Sadovsky MA, Adushkin VV (1988) Effect of a heated wall layer on shock wave characteristics. Dokl Akad Nauk SSSR, 300(1):79–83 (Trans. Dokl. of the USSR Academy of Sciences. Earth Science Section, 300(2):12–15)

    Google Scholar 

  • Sadovsky MA, Bolkhovitinov LG, Pisarenko VF (1987) Deformation of geophysic media and seismic process. Nauka, Moscow, p 100 (in Russian)

    Google Scholar 

  • Sadovsky MA, Kostyuchenko KN (1988) On the attenuation of the explosion seismic waves in the rock-massif. Dokl Akad Nauk SSSR, 301(6):1344–1347 (in Russian)

    Google Scholar 

  • Sagan C, Ostro S (1994) Dangers of asteroid deflection. Nature 403:165–166

    Google Scholar 

  • Samarskii AA, Popov Yu.P (1980) Difference Schemes of Gas Dynamics. Nauka, Moscow

    Google Scholar 

  • Scheeres DJ, Benner LAM, Óstro SJ et al (2005) Abrupt alteration of asteroid 2004 MN4’s spin state during its 2029 Earth flyby. American Astronomical Society, DDA Meeting #35, #04.02 (Icarus 178(1):281–283)

    Google Scholar 

  • Schmidt RM, Holsapple KA (1982) Estimates of crater size for large-body impacts: Gravitational scaling results. In: Silver LT, Shultz PH (eds) Geological implications of impacts of large asteroids and comets on the Earth. Geological Soc of America Special Paper 190, pp 93–101

    Google Scholar 

  • Schmidt RM, Housen KR (1987) Some recent advances in the scaling of impact and explosion cratering. Int J Impact Engng 5:543–560

    Article  ADS  Google Scholar 

  • Schultz PH, Gault DE (1975) Seismically induced modification of lunar surface features. Proceedings of the Lunar Science Conference 6th LSI. Houston, Texas, pp 2845–2862

    Google Scholar 

  • Schultz PH, Ernst CM, Anderson JLB (2005) Expectations for crater size and photometric evolution from the deep impact collision. Space Sci Rev 117(1–2):207–239

    Google Scholar 

  • Schweickart RL (2005) A call to (considered) action. National space society international space development conference, Washington, DC. B612 Foundation Occasional Paper 0501. (http://www.B612Foundation.org)

    Google Scholar 

  • Sekanina Z, Chodas PW, Yeomans DK (1994) Tidal disruption and the appearance of periodic Comet Shoemaker-Levy 9. Astronom Astrophys 289:607–636

    ADS  Google Scholar 

  • Shafer BP, Garcia MD, Scammon RJ, Snell CM et al (1994) The coupling of energy to asteroids and comets. In: . Gehrels T (ed) Hazards due to comets and asteroids. University of Arizona Press, Tucson, pp 955–1012

    Google Scholar 

  • Shchukin YK (2005) Dynamic geology of East-European platform. In: Dynamic processes in the system of interacting internal and external geospheres. Trans Inst Geospheres Dynamics RAS, pp 98–125 (in Russian)

    Google Scholar 

  • Shoemaker EM (1962) Interpretation of lunar craters. Physics and astronomy of the moon, Kapal Z (ed) Academic Press, Orlando, FL, pp 283–359

    Google Scholar 

  • Shoemaker EM (1983) Asteroid and comet bombardment of the Earth. Ann Rev Earth Planet Sci 11:461–494

    Article  ADS  Google Scholar 

  • Shokin Yu.I, Chubarov LP, Marchuk AG, Simonov KV (1989) Computational experiments in the problems of tsunamis. Nauka, Novosibirsk (in Russian)

    Google Scholar 

  • Shreffler RG, Christian R (1954) Boundary disturbances in high explosive shock tubes. J Appl Phys 25:324–331

    Article  ADS  Google Scholar 

  • Shuvalov VV (1999a) Multi-dimensional hydrodynamic code SOVA for interfacial flows: application to thermal layer effect. Shock Waves 9(6):381–390

    Article  MATH  ADS  Google Scholar 

  • Shuvalov VV (1999b) Atmospheric plumes created by meteoroids impacting the Earth. J Geophys Res 104(E3):5877–5889

    Article  ADS  Google Scholar 

  • Shuvalov VV (2002a) Radiation effect of the Chicxulub impact event. Geological and biological effects of impact events. Buffetaut E, Koeberl C (eds) Springer-Verlag, Berlin, pp 237–247

    Google Scholar 

  • Shuvalov VV (2002c) Numerical modeling of impacts into shallow sea. Impacts in Precambrian Shields . Plado J, Pesonen LJ (eds) Springer-Verlag Berlin, pp 323–336

    Google Scholar 

  • Shuvalov VV, Artemieva NA (2002a) Numerical modeling of Tunguska-like impacts. Planet Space Sci 50:181–192

    Article  ADS  Google Scholar 

  • Shuvalov VV, Artemieva NA (2002b) Atmospheric erosion and radiation impulse induced by impacts. In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond. Geological Society of America Special Paper 356, Boulder, CO, pp 695–704

    Chapter  Google Scholar 

  • Shuvalov VV, Trubetskaya IA (2002) Numerical modeling of marine target impacts. Solar System Res 36(5):417–430

    Article  ADS  Google Scholar 

  • Shuvalov VV, Artiemeva NA, Kosarev IB (1999) 3D hydrodynamic code SOVA for multimaterial flows, application to Shoemaker-Levy 9 Comet impact problem. Intern J Impact Engng 23(1):847–858

    Article  Google Scholar 

  • Shuvalov VV, Artiemeva NA, Kosarev IB et al (1997) Numerical simulation of the bolide phase of the impact of Comet Shoemaker-Levy 9 Fragments on Jupiter. Solar System Res 31(5):393–400

    ADS  Google Scholar 

  • Sikes LR Davis DM (1987) The yields of Soviet strategic weapons. Sci Amer pp 29–37

    Google Scholar 

  • Simonenko VA, NoginVN, Petrov DV et al (1994) Defending the Earth against impacts from large comets and asteroids. In: Gehrels T (ed) Hazards due to comets and asteroids. University of Arizona Press, Tucson, pp 929–953

    Google Scholar 

  • Solem JC, Snell CM (1994) Terminal intercept for less than one orbital period warning. In: Gehrels T (ed) Hazards due to comets and asteroids. University of Arizona Press, Tucson, pp 1013–1033

    Google Scholar 

  • Stewart ST, Ahrens TJ (2005) Shock properties of H_2O ice. J Geophys Res 110. E03005, doi:10.1029/2004JE002305

    Google Scholar 

  • Stokes GH, Evans JB, Larson SM (2002) Near-Earth asteroid search programs. In: Bottke W, Cellino A, Paolicchi P, Binzel RP (eds) Asteroids III. University of Arizona Press, Tucson, pp 45–54

    Google Scholar 

  • Stuart JS, Binzel RP (2004) Bias-corrected population, size distribution, and impact hazard for the near-Earth objects. Icarus 170(2):295–311

    Article  ADS  Google Scholar 

  • Sunshine JM, A’Hearn MF, Groussin O et al (2006) Water ice on Tempel 1: Before, during and after the impact event. Lunar Planet Sci XXXVII. LPSI, Houston. #1890. pdf

    Google Scholar 

  • Svetsov VV (1994) Radiation emitted during the flight: application to assessment of bolide parameters from the satellite recorded light flashes. Lunar Planet Sci XXV. LPSI, Houston, pp 1365–1366

    Google Scholar 

  • Svetsov VV (1996a) Where have the debris of the Tunguska meteoroid gone? Solar System Res 30(5):378–390

    ADS  Google Scholar 

  • Svetsov VV (1996b) Total ablation of the debris from the 1908 Tunguska explosion. Nature 383(6602):697–699

    Article  ADS  Google Scholar 

  • Svetsov VV (1998) Could the Tunguska debris survive the terminal flare? Planet Space Sci 46(2/3):261–268

    Article  ADS  Google Scholar 

  • Svetsov VV (2005) Numerical simulations of very large impacts on the Earth. Planet Space Sci 53:1205–1220

    Article  ADS  Google Scholar 

  • Svetsov VV, Nemtchinov IV, Teterev AV (1995) Disintegration of large meteoroids in Earth’s atmosphere: theoretical models. Icarus 116:131–153. Errata: Icarus. 1996 120(2):443

    Article  ADS  Google Scholar 

  • Taganov GI (1960) On the interaction of the shock wave with a thin layer of various density at the solid surface. Third All-Union Conference on Theoretical and Applied Mechanics. Moscow, 27 January–3 February 1960. Academy of Sciences USSR, Moscow, pp 114

    Google Scholar 

  • Tagliaferri E, Spalding R, Jacobs C et al (1994) Detection of meteoroid impacts by optical sensors in Earth orbit. In: T Gehrels (ed) Hazards due to comets and asteroids. University of Arizona Press, Tucson, pp 199–220

    Google Scholar 

  • Teterev AV (1998) Entry consequences of the rarefied water formations into the Earth’s atmosphere. Lunar Planetary Science Conference XXIX. LPI, Houston, pp 1578

    Google Scholar 

  • Teterev AV, Nemtchinov IV (1993) The sand bag model of the dispersion of the cosmic body in the atmosphere. Lunar Planetary Science Conference XXIV. Houston, pp 1415–1416

    Google Scholar 

  • Teterev AV, Nemtchinov IV, Rudak LV (2004) Impacts of large planetesimals on the Early Earth. Solar System Res 38(1):39–48

    Article  ADS  Google Scholar 

  • Teterev AV, Misychenko NI, Rudak LV et al (1993) Atmospheric breakup of a small comet in the Earth’s atmosphere. Lunar Planetary Science Conference XXIV. Houston, pp 1417–1418

    Google Scholar 

  • Titov VV, Rabinovitch AB, Mofjeld HO et al (2005) The Global reach of the 26 December 2004 Sumatra tsunami Science 309(5743):2045–2048

    Google Scholar 

  • Toon OB, Zahnle K, Turco RP, Covey C (1994) Environmental perturbations caused by asteroid impacts. In: Gehrels T (ed) Hazards due to comets and asteroids. University of Arizona Press, Tucson, pp 791–826

    Google Scholar 

  • Toon OB, Zahnle K, Morrison D et al (1997) Environmental perturbations caused by the impacts of asteroids and comets. Rev Geophys 35(1):41–78

    Article  ADS  Google Scholar 

  • Tsou P, Brownlee DE, Anderson JD et al (2004) Stardust encounters comet 81P/Wild2. J Geophys Res 109. E12S01. doi:10.1029/2004JE002317

    Google Scholar 

  • Turco RP, Yu F (1997) Aerosol invariance in expanding coagulating plumes. Geophys. Res. Lett. 24(10): 1223–1226

    Article  ADS  Google Scholar 

  • Van Leer B (1977) Towards the ultimate conservative difference scheme IV. A new approach to numerical convection. J Comput Phys 23:276–299

    Article  ADS  Google Scholar 

  • Vasilyev NV (1998) The Tunguska meteorite problem today. Planet Space Sci 46(2/3):129–150

    Article  ADS  Google Scholar 

  • Venetoklis P, Gustafson E, Maise G, Powell J (1994) Application of nuclear propulsion to NEO interceptors. In: Gehrels T (ed) Hazards due to comets and asteroids. University of Arizona Press, Tucson, pp 1089–1110

    Google Scholar 

  • Vityazev AV, Pechernikova GV (1997) Hazards due to asteroids and earthquakes: Introduction to new aspects of problem. UIPE RAS, Moscow (in Russian)

    Google Scholar 

  • Ward SN, Asphaug E (2000) Asteroid impact tsunami: a probabilistic hazard assessment. Icarus 145:64–78

    Article  ADS  Google Scholar 

  • Ward SN Asphaug E (2003) Asteroid impact tsunami of 16 March, 2880. Geophys J Intern 153:F6–F10

    Google Scholar 

  • Weaver HA, A’Hearn MF, Arpigny C et al (1995) The Hubble Space Telescope (HST) observing campaign on Comet Shoemaker-Levy 9. Science 267:1282–1288

    Google Scholar 

  • Weissman PR (1994) The comet and asteroid impact hazard in perspective. In: Gehrels T (ed) Hazards due to comets and asteroids. University of Arizona Press, Tucson, pp 1191–1212

    Google Scholar 

  • Weissman PR, Bottke WF, Jr, Levison HF (2002) Evolution of comets into asteroids. In: Bottke W, Cellino A, Paolicchi P, Binzel RP (eds) Asteroids III. University of Arizona Press, Tucson, pp 669–686

    Google Scholar 

  • Willis DE, George GD, Poeztl KG et al (1972) Seismological aspects of the CANNIKIN nuclear explosion. Bull Seism Soc Amer 62(6):1377–1395

    Google Scholar 

  • Willoughby AJ, McGuire ML, Borowski SK, Howe SD (1994) The role of nuclear thermal propulsion in mitigating Earth-threatening asteroids. In: Gehrels T (ed) Hazards due to comets and asteroids. University of Arizona Press, Tucson, pp 1073–1088

    Google Scholar 

  • Yudakhin PN, Shchukin YK, Makarov VI (2003) Deep structure and recent geodynamic processes in lithosphere of the East-European platform. Ural Branch RAS, Ekaterinburg (in Russian)

    Google Scholar 

  • Zahnle KJ (1990) Atmospheric chemistry by large impacts. In: Sharpton VL, Ward PD (eds) Global catastrophes in Earth history. Geological Society of America Special Paper 247. Boulder, CO, pp 271–288

    Google Scholar 

  • Zahnle KJ (1996a) Dynamics and chemistry of SL9 plumes. In: Noll KS, Weaver HA, Feldman PD (eds) The collision of Comet Shoemaker-Levy 9 and Jupiter. Cambridge University Press. Cambridge, pp 183–212

    Google Scholar 

  • Zaitsev AV (2000) Conceptual project of the Planetary Defense System “Citadel”. Intern Conf on Space Defense of the Earth-2000. Eupatoria, Crimea, p 28

    Google Scholar 

  • Zaitsev AV (2005) Basic principles and main problems of creation of “Citadel” Planetary Defense System. Materials of the All-Russian Conference “Asteroid-Comet Hazard-2005” (ACH_2005). 3–7 October 2005, Institute of Applied Astronomy RAS, St Petersburg, pp 144–147

    Google Scholar 

  • Zamyshlyayev BV, Mironov IL, Pal’min SA, Chizhevsky GV (1997) Shock wave in water. In: Physics of nuclear explosions 1. Development of explosion. Physical and Mathematical Literature Publishing Company, Moscow, pp 472–492 (in Russian)

    Google Scholar 

  • Zel’dovitch Ya.B, Raiser Yu.P (1967) Physics of shock waves and high-temperature hydrodynamic phenomena. Academic Press, New York

    Google Scholar 

  • Zotkin IT, Tsikulin M (1966) Simulation of the explosion of Tungus meteorite. Sov Phys Dokl 11:183–186

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 springer

About this chapter

Cite this chapter

Nemchinov, I., Shuvalov, V., Svetsov, V. (2008). Main Factors of Hazards Due to Comets and Asteroids. In: Adushkin, V., Nemchinov, I. (eds) Catastrophic Events Caused by Cosmic Objects. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6452-4_1

Download citation

Publish with us

Policies and ethics

Navigation