Ferromagnetism in Compression Stressed Transitional Bulk Nanostructured FE50AL50 Alloy

  • Conference paper
  • First Online:
Engineering Asset Management and Infrastructure Sustainability

Abstract

Mechanically alloyed powders were consolidated to produce bulk polycrystalline Fe-50 at.%Al alloy. Consolidation was achieved by cold compaction and sintering. Annealing was applied to the consolidated samples to obtain an ordered structure. Annealed samples were further deformed plastically by a range of compression stresses. Combination of characterization techniques including X-ray diffraction, transmission electron microscope, vibrating sample magnetometer and Vicker’s micro hardness were used to examine different properties. Results indicated that annealed sample exhibits ordered and non-magnetic phase while deformation induces simultaneously a transition to both disorder and ferromagnetism. The transitional alloy at intermediate state possesses partial disorder and low magnetization. Ferromagnetism is governed by anti site in the ordered matrix, in fact, the long range order and lattice expansion contribute to the increase in magnetism at low compression stresses while it is only due to the lattice expansion at higher stresses. The nano grain refinement inhibits plastic flow of metals, causing an increase in micro hardness while the order to disorder transition can be assessed by micro hardness measurements. Furthermore, several other factors like vacancy and dislocation also influence micro hardness behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 105.93
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cullity BD (1972) Introduction to magnetic materials. Addison-Wesley Pub. Co, Reading, MA

    Google Scholar 

  2. Smith WF (1986) Principles of material science and engineering. McGraw Hill, New York, pp 712–723

    Google Scholar 

  3. Alder E, Reppel GW, Rodewald W, Warlimont H (1989) Matching P/M and the physics of magnetic materials. Int J Powder Metall 25(4):319–335

    Google Scholar 

  4. Frayman L, Ryan D, Ryan JB (1998) Modified P/M soft magnetic materials for automotive applications. Int J of Powder Metall 34(7):31–39

    Google Scholar 

  5. DeAntonio DA (2003) Soft magnetic ferritic stainless steels. Adv Mat Process 201:29–32

    Google Scholar 

  6. Capus JM (2003) Soft magnetics for the 42-volt autos of the future. Metal Powder Report 22:39–42

    Google Scholar 

  7. ASTM A 839 (1996) Standard specification for iron-phosphorous powder metallurgy (P/M) parts for soft magnetic applications. American Society for Testing and Materials, West Conshohocken

    Google Scholar 

  8. Chen CW (1997) Magnetism and metallurgy of soft magnetic materials. Amsterdam, North Holland, pp 276–278

    Google Scholar 

  9. Jiles D (1991) Introduction to magnetism and magnetic materials. Chapman and Hall, London, pp 269–278

    Book  Google Scholar 

  10. Omori T, Suzuki H, Sampei T, Yako T, Kanero T (1991) Magnetic properties of 1%Al-iron and its applications. J Appl Phys 69(8):5927–5929

    Article  Google Scholar 

  11. Sugihara M (1960) On the effect of heat treatment in a magnetic field on magnetic properties of iron–aluminum alloys. J Phys Soc Jpn 15(7):1456–1460

    Article  Google Scholar 

  12. Lall C (1992) Soft magnetism, fundamentals for powder metallurgy and metal injection molding, monographs in P/M series no 2. Metal powder industry federation, New Jersey

    Google Scholar 

  13. German RM (1994) Powder metallurgy science, 2nd edn. Metal Powder Industries Federation, Princeton, pp 562–567

    Google Scholar 

  14. Dieter GE (1986) Mechanical metallurgy, 3rd edn. McGraw Hill, New York

    Google Scholar 

  15. Herrmann J, Inden G, Sautoff G (2003) Deformation behaviour of iron-rich iron–aluminum alloys at low temperatures. Acta Mater 51(2003):2847–2857

    Article  Google Scholar 

  16. Herrmann J, Inden G, Sautoff J (2003) Deformation behaviour of iron-rich iron–aluminum alloys at high temperatures. Acta Mater 51:3233–3242

    Article  Google Scholar 

  17. Taylor A, Jones RM (1958) Constitution and magnetic properties of iron-rich iron-aluminum alloys. J Phys Chem Solids 6:16–37

    Article  Google Scholar 

  18. Varin RA, Czujko T, Bystrzycki J, Calka A. (2002) Cold-work induced phenomena in B2 FeAl intermetallics. Mat Sci Eng A 329:213–221

    Article  Google Scholar 

  19. Sort J, Concustell A, Menéndez E, Suriñach S, Rao KV, Deevi SC, Baró MD, Nogués J (2006) Periodic Arrays of Micrometer and Sub-micrometer Magnetic Structures Prepared by Nanoindentation of a Nonmagnetic Intermetallic Compound. Adv Mat 18:1717–1720

    Article  Google Scholar 

  20. Huffman GP, Fisher RM (1967) Mössbauer Studies of Ordered and Cold-Worked Fe-Al Alloys Containing 30 to 50 at.% Aluminum. J Appl Phys 38:735–742

    Article  Google Scholar 

  21. Yang Y, Baker I, Martin P (1999) On the mechanism of the paramagnetic-to-ferromagnetic transition in Fe-Al. Phil Mag B 79:449–461

    Google Scholar 

  22. Jirásková Y, Schneeweiss O, Milicka K, Svoboda M, Procházka I (2000) Surface microstructure changes in the mechanically strained Fe–Al based intermetallics. Mat Sci Eng A 293:215–222

    Article  Google Scholar 

  23. Yelsukov EP, Voronina EV, Barinov VA (1992) Mössbauer study of magnetic properties formation in disordered Fe-Al alloys. J Magn Magn Mat 115:271–280

    Article  Google Scholar 

  24. Amils X, Nogués J, Suriñach S, Baró MD, Muñoz JS (1998) Magnetic properties of ball milled Fe-40 Al at.% alloys. IEEE Trans Magn 34:1129–1131

    Article  Google Scholar 

  25. Hernando A, Amils X, Nogués J, Suriñach S, Baró MD, Ibarra MR (1998) Influence of magnetization on the reordering of nanostructured ball-milled Fe-40 at.% Al powders. Phys Rev B 58:R11864–R11867

    Article  Google Scholar 

  26. Fassbender J, Liedke MO, Strache T, Möller W, Menendez E, Sort J, Rao KV, Deevi SC, Nogués J (2008) Ion mass dependence of irradiation-induced local creation of ferromagnetism in Fe60Al40 alloys. Phys Rev B 77:174430-1-5

    Article  Google Scholar 

  27. Beck PA (1971) Some recent results on magnetism in alloys. Metall Mat Trans B 2:2015–2024

    Article  Google Scholar 

  28. Wertheim GK, Jaccarino V, Wernick JH, Buchanan DNE (1964) Range of the Exchange Interaction in Iron Alloys. Phys Rev Lett 12:24–27

    Article  Google Scholar 

  29. Takahashi S (1986) Local environment effects in cold-worked Fe-Al alloys. J Magn Magn Mat 54–57:1065–1066

    Article  Google Scholar 

  30. Fujii M, Saito K, Wakayama K, Kawasaki M, Yoshioka T, Isshiki T, Nishio N, Shiojiri M (1999) Ferromagnetism and structural distortions induced in atomized Fe-AI (35–42 at.% AI) powder particles by cold milling. Philos Mag A 79:2013–2023

    Article  Google Scholar 

  31. Smirnov AV, Shelton WA, Johnson DD (2005) Importance of thermal disorder on the properties of alloys: Origin of paramagnetism and structural anomalies in bcc-based Fe1−xAlx. Phys Rev B: Condens Matter 71:064408-1-6

    Google Scholar 

  32. Apiñaniz E, Plazaola F, Garitaonandia JS (2003) Electronic structure calculations of Fe-rich ordered and disordered Fe-Al alloys. Eur Phys J B 31:167–177

    Article  Google Scholar 

  33. Nogués J et al (2006) Volume expansion contribution to the magnetism of atomically disordered intermetallic alloys. Phys Rev B 74:024407-1-5

    Article  Google Scholar 

  34. Young RA (1995) The Rietveld method, international union of crystallography monographs on crystallography. International Union of Crystallography/Oxford University Press, Oxford

    Google Scholar 

  35. Warren BE, Averbach BL (1950) The Effect of Cold-Work Distortion on X-Ray Patterns. J Appl Phys 21:595–599

    Article  Google Scholar 

  36. Lutterotti L, Scardi P (1990) Simultaneous structure and size-strain refinement by the Rietveld method. J Appl Crystall 23:246–252

    Article  Google Scholar 

  37. Enzo S, Fagherazzi G, Benedetti A, Polizzi S (1988) A profile-fitting procedure for analysis of broadened X-ray diffraction peaks. I. Methodology. J Appl Crystall 21:536

    Article  Google Scholar 

  38. Chikazumi S (1964) Physics of magnetism. Wiley, Malabar, p 277

    Google Scholar 

  39. Schlomann E (1967) Transient and Steady-State Absorption of Microwave Power under Parallel Pum**. Theory. J Appl Phys 38:1915–1928

    Google Scholar 

  40. Sebastian V, Lakshmi N, Venugopal K (2007) Structural and magnetic properties of mechanically alloyed Fe–66 at%Al. Intermetallics 15:1006–1012

    Article  Google Scholar 

  41. Pfeiler W (2000) Metals and materials society. J Miner 52:14–18

    Google Scholar 

  42. Amils X, Nogués J, Suriñach S, Muñoz JS, Lutterotti L, Gialanella S, Baró MD (1999) Structural, mechanical and magnetic properties of nanostructured FeAl alloys during disordering and thermal recovery. Nanostruct Mat 11:689–695

    Article  Google Scholar 

  43. Gialanella S, Amils X, Baró MD, Delcroix P, Le Caër G, Lutterotti L, Suriñach S (1998) Microstructural and kinetic aspects of the transformations induced in a FeAl alloy by ball-milling and thermal treatments. Acta Mater 46:3305–3316

    Article  Google Scholar 

  44. Morris DG, Amils X, Nogués J, Suriñach S, Baró MD, Muñoz-Morris MA (2002) Int J Non-Equilib Process 11:379

    Google Scholar 

  45. Apiñaniz E, Plazaola F, Garitaonandia JS (2004) Study of the weight of different contributions to the magnetic reinforcement in the order-disorder transition of FeAl alloys. J Magn Magn Mat 794:272–276

    Google Scholar 

  46. Amils X, Nogués J, Suriñach S, Muñoz JS, Lutterotti L, Baró MD (1999) Microstructure and hardness of a nanostructured Fe-40Al at% alloy. Nanostruct Mat 12:801–806

    Article  Google Scholar 

  47. Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mat Sci 51:427–556

    Article  Google Scholar 

  48. Yang Y, Baker I (1998) The influence of vacancy concentration on the mechanical behavior of Fe-40Al. Intermetallics 6:167–175

    Article  Google Scholar 

  49. Amils X, Nogués J, Suriñach S, Baro MD, Morris-Muñoz MA, Morris DG (2000) Hardening and softening of FeAl during milling and annealing. Intermetallics 8:805–813

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this paper

Cite this paper

Rajath Hegde, M.M., Wen, C.E., Li, Y., Hodgson, P.D. (2012). Ferromagnetism in Compression Stressed Transitional Bulk Nanostructured FE50AL50 Alloy. In: Mathew, J., Ma, L., Tan, A., Weijnen, M., Lee, J. (eds) Engineering Asset Management and Infrastructure Sustainability. Springer, London. https://doi.org/10.1007/978-0-85729-493-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-493-7_30

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-301-5

  • Online ISBN: 978-0-85729-493-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation