Argumentation Based on Classical Logic

  • Chapter
  • First Online:
Argumentation in Artificial Intelligence

Argumentation is an important cognitive process for dealing with conflicting information by generating and/or comparing arguments. Often it is based on constructing and comparing deductive arguments. These are arguments that involve some premises (which we refer to as the support of the argument) and a conclusion (which we refer to as the claim of the argument) such that the support deductively entails the claim.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. Amgoud and C. Cayrol. On the acceptability of arguments in preference-based argumentation. In G. Cooper and S. Moral, editors, Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI 1998), pages 1–7. Morgan Kaufmann, 1998.

    Google Scholar 

  2. Ph. Besnard, A. Hunter, and S. Woltran. Encoding deductive argumentation in quantified boolean formulae. Technical Report DBAI-TR-2008-60, Database and Artificial Intelligence Group, Institute of Information Systems, Technischen Universität Wien, 2008.

    Google Scholar 

  3. Ph. Besnard and A. Hunter. A logic-based theory of deductive arguments. Artificial Intelligence, 128:203–235, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  4. Ph. Besnard and A. Hunter. Practical first-order argumentation. In Proceedings of the 20th National Conference on Artificial Intelligence (AAAI 2005), pages 590–595. MIT Press,2005.

    Google Scholar 

  5. Ph. Besnard and A. Hunter. Knowledgebase compilation for efficient logical argumentation. In Proceedings of the 10th International Conference on Knowledge Representation (KR 2006), pages 123–133. AAAI Press, 2006.

    Google Scholar 

  6. Ph. Besnard and A. Hunter. Elements of Argumentation. MIT Press, 2008.

    Google Scholar 

  7. E. Black and A. Hunter. Using enthymemes in an inquiry dialogue system. In Proceedings of the Seventh International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS´08), pages 437–444. ACM Press, 2008.

    Google Scholar 

  8. M. Caminada and L. Amgoud. An axiomatic account of formal argumentation. In Proceedings of the 20th National Conference on Artificial Intelligence (AAAI 2005), pages 608–613, 2005.

    Google Scholar 

  9. M. Caminada. On the issue of contraposition of defeasible rules. In Computational Models of Argument: Proceedings of COMMA 2008, pages 109–115. IOS Press, 2008.

    Google Scholar 

  10. C. Chesñevar, A. Maguitman, and R. Loui. Logical models of argument. ACM Computing Surveys, 32:337–383, 2000.

    Article  Google Scholar 

  11. P. Dung, R. Kowalski, and F. Toni. Dialectical proof procedures for assumption-based admissible argumentation. Artificial Intelligence, 170:114–159, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  12. V. Efstathiou and A. Hunter. Algorithms for effective argumentation in classical propositional logic. In Proceedings of the International Symposium on Foundations of Information and Knowledge Systems (FOIKS´08), volume 4932 of LNCS, pages 272–290. Springer, 2008.

    Google Scholar 

  13. V. Efstathiou and A. Hunter. Focused search for arguments from propositional knowledge. In Computation Models of Argument: Proceedings of COMMA 2008, pages 159–170. IOS Press, 2008.

    Google Scholar 

  14. J. Fox, P. Krause, and M. Elvang-Gøransson. Argumentation as a general framework for uncertain reasoning. In Proceedings of the 9th Conference on Uncertainty in Artificial Intelligence (UAI 1993), pages 428–434. Morgan Kaufmann, 1993.

    Google Scholar 

  15. A. García and G. Simari. Defeasible logic programming: An argumentative approach. Theory and Practice of Logic Programming, 4:95–138, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Hunter. Real arguments are approximate arguments. In Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI´07), pages 66–71. MIT Press, 2007.

    Google Scholar 

  17. A. Hunter. Reasoning about the appropriateness of proponents for arguments. In Proceedings of the 23rd AAAI Conference on Artificial Intelligence (AAAI´08). MIT Press, 2008.

    Google Scholar 

  18. N. Mann and A. Hunter. Argumentation using temporal knowledge. In Computational Models of Argument: Proceedings of COMMA´08, pages 204–215. IOS Press, 2008.

    Google Scholar 

  19. D. Nute. Defeasible logics. In Handbook of Logic in Artificial Intelligence and Logic Programming, Volume 3: Nonmonotonic Reasoning and Uncertainty Reasoning, pages 355–395. Oxford University Press, 1994.

    Google Scholar 

  20. J. Pollock. How to reason defeasibly. Artificial Intelligence, 57:1–42, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  21. H. Prakken and G. Sartor. Argument-based extended logic programming with defeasible priorities. Journal of Applied Non-classical Logic, 7:25–75, 1997.

    MATH  MathSciNet  Google Scholar 

  22. H. Prakken and G. Vreeswijk. Logical systems for defeasible argumentation. In D. Gabbay, editor, Handbook of Philosophical Logic, pages 219–318. Kluwer, 2002.

    Google Scholar 

  23. G. Simari and R. Loui. A mathematical treatment of defeasible reasoning and its implementation. Artificial Intelligence, 53:125–157, 1992.

    Article  MathSciNet  Google Scholar 

  24. B. Verheij. Automated argument assistance for lawyers. In Proceedings of the 7th International Conference on Artificial Intelligence and Law (ICAIL 1999), pages 43–52. ACM Press, 1999.

    Google Scholar 

  25. G. Vreeswijk. Abstract argumentation systems. Artificial Intelligence, 90:225–279, 1997.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We wish to thank Maria Vanina Martinez for feedback on an earlier draft of this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag US

About this chapter

Cite this chapter

Besnard, P., Hunter, A. (2009). Argumentation Based on Classical Logic. In: Simari, G., Rahwan, I. (eds) Argumentation in Artificial Intelligence. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-98197-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-98197-0_7

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-98196-3

  • Online ISBN: 978-0-387-98197-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation