Angular Momentum Transport in the Sun’s Radiative Zone by Gravito-Inertial Waves

  • Chapter
Helioseismology, Asteroseismology, and MHD Connections
  • 646 Accesses

Abstract

Internal gravity waves constitute an efficient process for angular momentum transport over large distances. They are now seen as an important ingredient in understanding the evolution of stellar rotation and can explain the Sun’s quasi-flat internal-rotation profile. Because the Sun’s rotation frequency is of the same order as that of the waves, it is now necessary to refine our description of wave propagation and to take into account the action of the Coriolis acceleration in a coherent way. To achieve this goal, we adopt the traditional approximation, which can be applied to stellar radiation zones under conditions that are given. We present the modified transport equations and their numerical evaluation in a parameter range that is significant for the Sun. Consequences for the transport of angular momentum inside solar and stellar radiative regions are discussed.

Helioseismology, Asteroseismology, and MHD Connections

Guest Editors: Laurent Gizon and Paul Cally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bildsten, L., Ushomirsky, G., Cutler, C.: 1996, Ocean g-modes on rotating neutron stars. Astrophys. J. 460, 827.

    Article  ADS  Google Scholar 

  • Berthomieu, G., Gonczi, G., Graff, P., Provost, J., Rocca, A.: 1978, Low-frequency gravity modes of a rotating star. Astron. Astrophys. 70, 597.

    ADS  Google Scholar 

  • Brown, T.M., Christensen-Dalsgaard, J., Dziembowski, W.A., Goode, P., Gough, D.O., Morrow, C.A.: 1989, Inferring the Sun’s internal angular velocity from observed p-modes frequency splittings. Astrophys. J. 343, 526.

    Article  ADS  Google Scholar 

  • Brun, A.-S., Zahn, J.-P.: 2006, Magnetic confinement of the solar tachocline. Astron. Astrophys. 457, 665.

    Article  ADS  Google Scholar 

  • Bretherton, F.P.: 1969, Momentum transport by gravity waves. Q. J. Roy. Meteorol. Soc. 95, 213.

    Article  ADS  Google Scholar 

  • Chaboyer, B., Demarque, P., Pinsonneault, M.H.: 1995, Stellar models with microscopic diffusion and rotational mixing. I. Application to the Sun. Astrophys. J. 441, 865.

    Article  ADS  Google Scholar 

  • Charbonnel, C., Talon, S.: 2005, Influence of gravity waves on the internal rotation and Li abundance of solar-type stars. Science 309, 2189.

    Article  ADS  Google Scholar 

  • Cowling, T.G.: 1941, The non-radial oscillations of polytropic stars. Mon. Not. Roy. Astron. Soc. 101, 367.

    ADS  MathSciNet  Google Scholar 

  • Dintrans, B.: 1999, Ph.D. Thesis, Université Toulouse III.

    Google Scholar 

  • Dintrans, B., Rieutord, M.: 2000, Oscillations of a rotating star: a non-perturbative theory. Astron. Astrophys. 354, 86.

    ADS  Google Scholar 

  • Dintrans, B., Rieutord, M., Valdettaro, L.: 1999, Gravito-inertial waves in a rotating stratified sphere or spherical shell. J. Fluid Mech. 398, 271.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Eckart, C.: 1960, Hydrodynamics of Oceans and Atmospheres, Pergamon Press, Oxford.

    MATH  Google Scholar 

  • Friedlander, S.: 1987, Internal waves in a rotating stratified spherical shell: asymptotic solutions. Geophys. J. Roy. Astron. Soc. 89, 637.

    Google Scholar 

  • Friedlander, S., Siegmann, W.L.: 1982, Internal waves in a rotating stratified fluid in an arbitrary gravitational field. Geophys. Astrophys. Fluid Dyn. 19, 267.

    Article  MATH  ADS  Google Scholar 

  • García, R.A., Turck-Chièze, S., Jiménez-Reyes, S.J., Ballot, J., Pallé, P.L., Eff-Darwich, A., Mathur, S., Provost, J.: 2007, Tracking solar gravity modes: the dynamics of the solar core. Science 316, 1591.

    Article  ADS  Google Scholar 

  • García-López, R.J., Spruit, H.C.: 1991, Li depletion in F stars by internal gravity waves. Astrophys. J. 377, 268.

    Article  ADS  Google Scholar 

  • Garaud, P.: 2002, Dynamics of the solar tachocline. I. An incompressible study. Mon. Not. Roy. Astron. Soc. 329, 1.

    Article  ADS  Google Scholar 

  • Gerkema, T., Shrira, V.I.: 2005, Near-inertial waves in the ocean: beyond the ‘traditional approximation’. J. Fluid Mech. 529, 195.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Gerkema, T., Zimmerman, J.T.F., Mass, L.R.M., Van Haren, H.: 2008, Geophysical and astrophysical fluid dynamics beyond the traditional approximation, Rev. Geophys. in press. doi:10.1029/2006RG000220.

  • Goldreich, P., Nicholson, P.D.: 1989a, Tides in rotating fluids. Astrophys. J. 342, 1075.

    Article  ADS  MathSciNet  Google Scholar 

  • Goldreich, P., Nicholson, P.D.: 1989b, Tidal friction in early-type stars. Astrophys. J. 342, 1079.

    Article  ADS  MathSciNet  Google Scholar 

  • Goldreich, P., Murray, N., Kumar, P.: 1994, Excitation of solar p-modes. Astrophys. J. 424, 466.

    Article  ADS  Google Scholar 

  • Gough, D.O., McIntyre, M.E.: 1998, Inevitability of a magnetic field in the Sun’s radiative interior. Nature 394, 567.

    Article  Google Scholar 

  • Hayes, W.D.: 1970, Conservation of action and modal wave action. Proc. Roy. Soc. Lond. A 320, 187.

    Article  ADS  Google Scholar 

  • Hough, S.S.: 1898, On the application of harmonic analysis to the dynamical theory of the tides. Part II: On the general integration of Laplace’s dynamical equations. Philos. Trans. Roy. Soc. A 191, 139.

    Article  ADS  Google Scholar 

  • Kumar, P., Talon, S., Zahn, J.-P.: 1999, Angular momentum redistribution by waves in the Sun. Astrophys. J. 520, 859.

    Article  ADS  Google Scholar 

  • Laplace, P.-S.: 1799, Mécanique Céleste, Bureau des Longitudes, Paris.

    Google Scholar 

  • Lee, U., Saio, H.: 1997, Low-frequency non-radial oscillations in rotating stars: I. Angular dependence. Astrophys. J. 491, 839.

    Article  ADS  Google Scholar 

  • Longuet-Higgins, F.R.S.: 1968, The eigenfunctions of Laplace’s tidal equations over a sphere. Phil. Trans. Roy. Soc. A 262, 511.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Maeder, A., Meynet, G.: 2000, The evolution of rotating stars. Ann. Rev. Astron. Astrophys. 38, 143.

    Article  ADS  Google Scholar 

  • Mathis, S.: 2005, Ph.D. Thesis, Université Paris XI.

    Google Scholar 

  • Mathis, S., Zahn, J.-P.: 2004, Transport and mixing in the radiation zones of rotating stars: I. Hydrodynamical processes. Astron. Astrophys. 425, 229.

    Article  ADS  Google Scholar 

  • Mathis, S., Zahn, J.-P.: 2005, Transport and mixing in the radiation zones of rotating stars: II. Axisymmetric magnetic field. Astron. Astrophys. 440, 653.

    Article  ADS  Google Scholar 

  • Matias, J., Zahn, J.-P.: 1997, In: Provost J., Schmider F.-X. (eds.) IAU Symposium 18, Poster Volume. Observatoire de Nice, 103.

    Google Scholar 

  • Miles, J.W.: 1977, Asymptotic eigensolutions of Laplace’s tidal equation. Proc. Roy. Soc. Lond. A 353, 377.

    Article  MATH  ADS  Google Scholar 

  • Pantillon, F.P., Talon, S., Charbonnel, C.: 2007, Angular momentum transport by internal gravity waves: IV. Wave excitation by core convection and the Coriolis effect. Astron. Astrophys. 474, 155.

    Article  ADS  Google Scholar 

  • Pedlosky, J.: 1987, Geophysical Fluid Dynamics, 2nd edn., Springer, New York.

    MATH  Google Scholar 

  • Pinsonneault, M.H., Kawaler, S.D., Sofia, S., Demarque, P.: 1989, Evolutionary models of the rotating sun. Astrophys. J. 338, 424.

    Article  ADS  Google Scholar 

  • Press, W.H.: 1981, Radiative and other effects from internal waves in solar and stellar interiors. Astrophys. J. 245, 286.

    Article  ADS  MathSciNet  Google Scholar 

  • Provost, J., Berthomieu, G., Rocca, A.: 1981, Low frequency oscillations of a slowly rotating star: quasi-toroidal modes. Astron. Astrophys. 94, 126.

    MATH  ADS  MathSciNet  Google Scholar 

  • Ringot, O.: 1998, About the role of gravity waves in the angular momentum transport inside the radiative zone of the Sun. Astron. Astrophys. 335, L89.

    ADS  Google Scholar 

  • Samadi, R., Goupil, M.-J.: 2001, Excitation of stellar p-modes by turbulent convection. I. Theoretical formulation. Astron. Astrophys. 370, 136.

    Article  ADS  Google Scholar 

  • Schatzman, E.: 1993, Transport of angular momentum and diffusion by the action of internal waves. Astron. Astrophys. 279, 431.

    ADS  Google Scholar 

  • Stewartson, K., Richard, J.: 1969, Pathological oscillations of a rotating fluid. J. Fluid Mech. 35, 759.

    Article  MATH  ADS  Google Scholar 

  • Stewartson, K., Walton, I.C.: 1976, On waves in a thin shell of stratified rotating fluid. Proc. Roy. Soc. Lond. A 349, 141.

    Article  MATH  ADS  Google Scholar 

  • Talon, S.: 1997, Ph.D. Thesis, Université Paris VII.

    Google Scholar 

  • Talon, S.: 2007, Transport processes in stars: diffusion, rotation, magnetic fields and internal waves. In: Charbonnel C., Zahn J.-P. (eds.) Stellar Nucleosynthesis: 50 years after BBFH, Eur. Astron. Soc., Les Ulis. in press (ar**v:0708.1499).

  • Talon, S., Charbonnel, C.: 2005, Hydrodynamical stellar models including rotation, internal gravity waves and atomic diffusion. I. Formalism and tests on Pop I dwarfs. Astron. Astrophys. 440, 981.

    Article  ADS  Google Scholar 

  • Talon, S., Zahn, J.-P.: 1998, Towards a hydrodynamical model predicting the observed solar rotation profile. Astron. Astrophys. 329, 315.

    ADS  Google Scholar 

  • Talon, S., Kumar, P., Zahn, J.-P.: 2002, Angular momentum extraction by gravity waves in the Sun. Astrophys. J. 574, L175.

    Article  ADS  Google Scholar 

  • Townsend, R.H.D.: 2003, Asymptotic expressions for the angular dependence of low-frequency pulsation modes in rotating stars. Mon. Not. Roy. Astron. Soc. 340, 1020.

    Article  ADS  Google Scholar 

  • Turck-Chièze, S., Couvidat, S., Piau, L., Ferguson, J., Lambert, P., Ballot, J., García, R.A., Nghiem, P.: 2004, Surprising Sun: a new step towards a complete picture? Phys. Rev. Lett. 93, id. 211102.

    Article  ADS  Google Scholar 

  • Yanai, M., Maruyama, T.: 1966, J. Meteorol. Soc. Japan 44, 291.

    Google Scholar 

  • Zahn, J.-P.: 1992, Circulation and turbulence in rotating stars. Astron. Astrophys. 265, 115.

    ADS  Google Scholar 

  • Zahn, J.-P., Talon, S., Matias, J.: 1997, Angular momentum transport by internal waves in the solar interior. Astron. Astrophys. 322, 320.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mathis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, BV

About this chapter

Cite this chapter

Mathis, S., Talon, S., Pantillon, FP., Zahn, JP. (2008). Angular Momentum Transport in the Sun’s Radiative Zone by Gravito-Inertial Waves. In: Gizon, L., Cally, P., Leibacher, J. (eds) Helioseismology, Asteroseismology, and MHD Connections. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89482-9_8

Download citation

Publish with us

Policies and ethics

Navigation