Current Approaches for Engineering Proteins with Diverse Biological Properties

  • Chapter
Bio-Applications of Nanoparticles

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 620))

  • 2531 Accesses

Abstract

In the past two decades, protein engineering has advanced significantly with the emergence of new chemical and, genetic approaches. Modification and recombination of existing proteins not only produced novel enzymes used commercially and in research laboratories, but furthermore, they revealed the mechanisms of protein function. In this chapter, we will describe, the applications and significance of current protein engineering approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Li B, Nowak NM, Kim SK et al. Random mutagenesis of the M3 muscarinic acetylcholine receptor expressed in yeast: I dentification of second-site mutations that restore function to a coupling-deficient mutant M3 receptor. J Biol Chem 2005; 280(7):5664–5675.

    Article  PubMed  CAS  Google Scholar 

  2. Chao G, Cochran JR, Wittrup KD. Fine epitope map** of anti-epidermal growth factor receptor antibodies through random mutagenesis and yeast surface display. J Mol Biol 2004; 342(2):539–550.

    Article  PubMed  CAS  Google Scholar 

  3. Farrow KA, Lyras D, Polekhina G et al. Identification of essential residues in the Erm(B), rRNA methyltransferase of Clostridium perfringens. Antimicrob Agents Chemother 2002;46(5):1253–1261.

    Article  PubMed  CAS  Google Scholar 

  4. Munoz I, Ruiz A, Marquina M et al. Functional characterization of the yeast Ppzl phosphatase inhibitory subunit Hal3: A mutagenesis study. J Biol Chem 2004; 279(41):42619–42627.

    Article  PubMed  CAS  Google Scholar 

  5. Takahashi M, Hasuura Y, Nakamori S et al. Improved autoprocessing efficiency of mutant subtilisins E with altered specificity by engineering of the pro-region. J Biochem (Tokyo) 2001; 130(1):99–106.

    CAS  Google Scholar 

  6. Fujii K, Minagawa H, Terada Y et al. Use of random and saturation mutageneses to improve the properties of Thermus aquaticus amylomaltase for efficient production, of cycloamyloses. Appl Environ Microbiol 2005; 71(10):5823–5827.

    Article  PubMed  CAS  Google Scholar 

  7. Shim JH, Kim YW, Kim TJ et al. Improvement of cyclodextrin glucanotransferase as an antistaling enzyme by error-prone PCR. Protein Eng Des Sel 2004; 17(3):205–211.

    Article  PubMed  CAS  Google Scholar 

  8. Kohno M, Enatsu M, Funatsu J et al. Improvement of the optimum temperature of lipase activity for Rhizopus niveus by random mutagenesis and its structural interpretation. J Biotechnol 2001; 87(3):203–210.

    Article  PubMed  CAS  Google Scholar 

  9. Amara AA, Steinbuchel A, Rehm BH. In vivo evolution of the Aeromonas punctata polyhydroxyalkanoate (PHA) synthase: Isolation and characterization of modified PHA synthases with enhanced activity. Appl Microbiol Biotechnol 2002; 59(4–5):477–482.

    PubMed  CAS  Google Scholar 

  10. Delagrave S, Hawtin RE, Silva CM et al. Red-shifted excitation mutants of the green fluorescent protein. Biotechnology (NY) 1995; 13(2):151–154.

    Article  CAS  Google Scholar 

  11. Lanio T, Jeltsch A, **oud A. Towards the design of rare cutting restriction endonucleases: Using directed evolution to generate variants of EcoRV differing in their substrate specificity by two orders of magnitude. J Mol Biol 1998; 283(1):59–69.

    Article  PubMed  CAS  Google Scholar 

  12. Wu TK, Griffin JH. Conversion of a plant oxidosqualene-cycloartenol synthase to an oxidosqualene-lanosterol cyclase by random mutagenesis. Biochemistry 2002; 41(26):8238–8244.

    Article  PubMed  CAS  Google Scholar 

  13. Greener A, Callahan M, Jerpseth B. An efficient random mutagenesis technique using an E. coli mutator strain. Mol Biotechnol 1997; 7(2):189–195.

    Article  PubMed  CAS  Google Scholar 

  14. Greener A, Callahan M, Jerpseth B. An efficient random mutagenesis technique using an E. coli mutator strain. Methods Mol Biol 1996; 57:375–385.

    PubMed  CAS  Google Scholar 

  15. Kunkel TA, Erie DA. DNA mismatch repair. Annu Rev Biochem 2005; 74:681–710.

    Article  PubMed  CAS  Google Scholar 

  16. Brakmann S, Lindemann BF. Generation of mutant libraries using random mutagenesis. In: Brakmann S, Schwienhorst A, eds. Evolutionary methods in biotechnology: Cleaver, tricks for directed evolution. Weinheim: Wiley-VCH, 2004:5–12.

    Google Scholar 

  17. Bornscheuer UT, Altenbuchner J, Meyer HH. Directed evolution of an esterase: Screening of enzyme libraries based on pH-indicators and a growth assay. Bioorg Med Chem 1999; 7(10):2169–2173.

    Article  PubMed  CAS  Google Scholar 

  18. Bornscheuer UT, Altenbuchner J, Meyer HH. Directed evolution of an esterase for the stereoselective resolution of a key intermediate in the synthesis of epothilones. Biotechnol Bioeng 1998; 58(5):554–559.

    Article  PubMed  CAS  Google Scholar 

  19. Henke E, Bornscheuer UT. Directed evolution of an esterase from Pseudomonas fluorescens. Random mutagenesis by error-prone PCR or a mutator strain and identification of mutants showing enhanced enantioselectivity by a resorufin-based fluorescence assay. Biol Chem 1999; 380(7–8):1029–1033.

    Article  PubMed  CAS  Google Scholar 

  20. Shortle D, Nathans D. Local mutagenesis: A method for generating viral mutants with base substitutions in preselected regions of the viral genome. Proc Natl Acad Sci USA 1978; 75(5):2170–2174.

    Article  PubMed  CAS  Google Scholar 

  21. Shimada A. PCR-based site-directed mutagenesis. Methods Mol Biol 1996; 57:157–165.

    PubMed  CAS  Google Scholar 

  22. Storici F, Lewis LK, Resnick MA. In vivo site-directed mutagenesis using oligonucleotides. Nat Biotechnol 2001; 19(8):773–776.

    Article  PubMed  CAS  Google Scholar 

  23. Hutchison IIIrd CA, Phillips S, Edgell MH et al. Mutagenesis at a specific position in a DNA sequence. J Biol Chem 1978; 253(18):6551–6560.

    PubMed  CAS  Google Scholar 

  24. Saint-Joanis B, Souchon H, Wilming M et al. Use of site-directed mutagenesis to probe the structure, function and isoniazid activation of the catalase/peroxidase, KatG, from Mycobacterium tuberculosis. Biochem J 1999; 338 (Pt 3):753–760.

    Article  PubMed  CAS  Google Scholar 

  25. Ohtsubo K, Imajo S, Ishiguro M et al. Studies on the structure-function relationship of the HNK-1 associated glucuronyltransferase, GlcAT-P, by computer modeling and site-directed mutagenesis. J Biochem (Tokyo) 2000; 128(2):283–291.

    CAS  Google Scholar 

  26. Farh L, Hwang SY, Steinrauf L et al. Structure-function studies of Escherichia coli biotin synthase via a chemical modification and site-directed mutagenesis approach. J Biochem (Tokyo) 2001; 130(5):627–635.

    CAS  Google Scholar 

  27. Alam M, Vance DE, Lehner R. Structure-function analysis of human triacylglycerod hydrolase by site-directed mutagenesis: Identification of the catalytic triad and a glycosylation site. Biochemistry 2002; 41(21):6679–6687.

    Article  PubMed  CAS  Google Scholar 

  28. Sviridov D, Hoang A, Huang W et al. Structure-function studies of apoA-I variants: Site-directed mutagenesis and natural mutations. J Lipid Res 2002; 43(8):1283–1292.

    PubMed  CAS  Google Scholar 

  29. Gupta RP, He YA, Patrick KS et al. CYP3A4 is a vitamin D-24-and 25-hydroxylase: Analysis of structure function by site-directed mutagenesis. J Clin Endocrinol Metab 2005; 90(2):1210–1219.

    Article  PubMed  CAS  Google Scholar 

  30. Mullaney EJ, Daly CB, Kim T et al. Site-directed mutagenesis of Aspergillus niger NRRL 3135 phytase at, residue 300 to enhance catalysis at pH 4.0. Biochem Biophys Res Commun 2002; 297(4):1016–1020.

    Article  PubMed  CAS  Google Scholar 

  31. Tobe S, Shimogaki H, Ohdera M et al. Expression of Bacillus protease (Protease BYA) from Bacillus sp. Y in Bacillus subtilis and enhancement of its specific activity by site-directed mutagenesis-improvement in productivity of detergent enzyme. Biol Pharm, Bull 2006; 29(1):26–33.

    Article  CAS  Google Scholar 

  32. Konkol L, Hirai TJ, Adams JA. Substrate specificity of the oncoprotein v-Fps: Site-specific mutagenesis of the putative P+1 pocket. Biochemistry 2000; 39(1):255–262.

    Article  PubMed  CAS  Google Scholar 

  33. Ormo M, Cubitt AB, Kallio K et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science 1996; 273(5280):1392–1395.

    Article  PubMed  CAS  Google Scholar 

  34. Budisa N, Rubini M, Bae JH et al. Global replacement of tryptophan with aminotryptophans generates noninvasive protein-based optical pH sensors. Angew Chem Int Ed Engl 2002; 41(21):4066–4069.

    Article  PubMed  CAS  Google Scholar 

  35. Cohen GN, Cowie DB. Total replacement of methionine by selenomethionine in the proteins of Escherichia coli. C R Hebd Seances Acad Sci 1957; 244(5):680–683.

    PubMed  CAS  Google Scholar 

  36. Hyun Bae J, Rubini M, Jung G et al. Expansion of the genetic code enables design of a novel “gold” class of green fluorescent proteins. J Mol Biol 2003; 328(5):1071–1081.

    Article  Google Scholar 

  37. Kobayashi T, Sakamoto K, Takimura T et al. Structural basis of nonnatural amino acid recognition by an engineered aminoacyl-tRNA synthetase for genetic code expansion. Proc Natl Acad Sci USA 2005; 102(5):1366–1371.

    Article  PubMed  CAS  Google Scholar 

  38. Kwon I, Kirshenbaum K, Tirrell DA. Breaking the degeneracy of the genetic code. J Am Chem Soc 2003; 125(25):7512–7513.

    Article  PubMed  CAS  Google Scholar 

  39. Plettner E, Khumtaveeporn K, Shang X et al. A combinatorial approach to, chemical modification of subtilisin Bacillus lentus. Bioorg Med Chem Lett 1998; 8(17):2291–2296.

    Article  PubMed  CAS  Google Scholar 

  40. Taki M, Hohsaka T, Murakami H et al. A novel fluorescent nonnatural amino acid that can be incorporated into a specific position of streptavidin. Nucleic Acids Res Suppl 2002; (2):203–204.

    PubMed  CAS  Google Scholar 

  41. Murakami H, Hohsaka T, Ashizuka Y et al. Site-directed incorporation of fluorescent nonnatural amino acids into streptavidin for highly sensitive detection of biotin. Biomacromolecules. Spring 2000; 1(1):118–125.

    CAS  Google Scholar 

  42. Sisido M, Hohsaka T. Introduction of specialty functions by the position-specific incorporation of nonnatural amino acids into proteins through four-base codon/anticodon pairs. Appl Microbiol Biotechnol 2001;57(3):274–281.

    Article  PubMed  CAS  Google Scholar 

  43. Kajihara D, Hohsaka T, Sisido M. Synthesis and sequence optimization of GFP mutants containing aromatic nonnatural amino acids at the Tyr66 position. Protein Eng Des Sel 2005; 18(6):273–278.

    Article  PubMed  CAS  Google Scholar 

  44. Hohsaka T, Sisido M. Incorporation of nonnatural amino acids into proteins by using five-base codon-anticodon pairs. Nucleic Acids Symp Ser 2000; (44):99–100.

    PubMed  Google Scholar 

  45. Pedelacq JD, Cabantous S, Tran T et al. Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 2006; 24(1):79–88.

    Article  PubMed  CAS  Google Scholar 

  46. Castle LA, Siehl DL, Gorton R et al. Discovery and directed evolution of a glyphosate tolerance gene. Science 2004; 304(5674):1151–1154.

    Article  PubMed  CAS  Google Scholar 

  47. Stemmer WP. Rapid evolution of a protein in vitro by DNA shuffling. Nature 1994; 370(6488):389–391.

    Article  PubMed  CAS  Google Scholar 

  48. Stemmer WP. DNA shuffling by random fragmentation and reassembly: In vitro recombination for molecular evolution. Proc Natl Acad Sci USA 1994; 91(22): 10747–10751.

    Article  PubMed  CAS  Google Scholar 

  49. Crameri A, Whitehorn EA, Tate E et al. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 1996; 14(3):315–319.

    Article  PubMed  CAS  Google Scholar 

  50. Aharoni A, Gaidukov L, Yagur S et al. Directed evolution of mammalian paraoxonases PON1 and PON3 for bacterial expression and catalytic specialization. Proc Natl Acad Sci USA 2004; 101(2):482–487.

    Article  PubMed  CAS  Google Scholar 

  51. Hsu JS, Yang YB, Deng CH et al. Family shuffling of expandase genes to enhance substrate specificity for penicillin G. Appl Environ Microbiol 2004; 70(10):6257–6263.

    Article  PubMed  CAS  Google Scholar 

  52. Suen WC, Zhang N, **ao L et al. Improved activity and thermostability, of Candida antarctica lipase B by DNA family shuffling. Protein Eng Des Sel 2004; 17(2):133–140.

    Article  PubMed  CAS  Google Scholar 

  53. Zhao H, Giver L, Shao Z et al. Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat Biotechnol 1998; 16(3):258–261.

    Article  PubMed  CAS  Google Scholar 

  54. He M, Yang ZY, Nie YF et al. A new type of class I bacterial 5-enopyruvylshikimate-3-phosphate synthase mutants with enhanced tolerance to glyphosate. Biochim Biophys Acta 2001; 1568(1):1–6.

    PubMed  CAS  Google Scholar 

  55. Dion M, Nisole A, Spangenberg P et al. Modulation of the regioselectivity of a Bacillus alpha-galactosidase by directed evolution. Glycoconj J 2001; 18(3):215–223.

    Article  PubMed  CAS  Google Scholar 

  56. Vamvaca K, Butz M, Walter KU et al. Simultaneous optimization of enzyme activity and quaternary structure by directed evolution. Protein Sci 2005; 14(8):2103–2114.

    Article  PubMed  CAS  Google Scholar 

  57. Gould SM, Tawfik DS. Directed evolution of the promiscuous esterase activity of carbonic anhydrase II. Biochemistry 2005; 44(14):5444–5452.

    Article  PubMed  CAS  Google Scholar 

  58. Wong DW, Batt SB, Lee CC et al. High-activity barley alpha-amylase by directed evolution. Protein J 2004; 23(7):453–460.

    Article  PubMed  CAS  Google Scholar 

  59. Kim YW, Lee SS, Warren RA et al. Directed evolution of a glycosynthase from Agrobacterium sp. increases its catalytic activity dramatically and expands its substrate, repertoire. J Biol, Chem 2004; 279(41):42787–42793.

    Article  CAS  Google Scholar 

  60. Johannes TW, Woodyer RD, Zhao H. Directed evolution of a thermostable phosphite dehydrogenase for NAD(P)H regeneration. Appl Environ Microbiol 2005;71(10):5728–5734.

    Article  PubMed  CAS  Google Scholar 

  61. Hoseki J, Yano T, Koyama Y et al. Directed evolution of thermostable kanamycin-resistance gene: A convenient selection marker for Thermus thermophilus. J Biochem (Tokyo) 1999; 126(5):951–956.

    CAS  Google Scholar 

  62. Hao J, Berry A. A, thermostable variant of fructose bisphosphate aldolase constructed by directed evolution also shows increased stability in organic solvents. Protein Eng Des Sel 2004;17(9):689–697.

    Article  PubMed  CAS  Google Scholar 

  63. Zhang N, Suen WC, Windsor W et al. Improving tolerance of Candida antarctica lipase B towards irreversible thermal inactivation through directed evolution. Protein Eng 2003;16(98):599–605.

    Article  PubMed  CAS  Google Scholar 

  64. Masip L, Pan JL, Haldar S et al. An engineered pathway for the formation of protein disulfide bonds. Science 2004; 303(5661):1185–1189.

    Article  PubMed  CAS  Google Scholar 

  65. Umeno D, Tobias AV Arnold FH. Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiol Mol Biol Rev 2005; 69(1):51–78.

    Article  PubMed  CAS  Google Scholar 

  66. Guntas G, Mitchell SF, Ostermeier M. A molecular switch created by in vitro recombination of nonhomologous genes. Chem Biol 2004; 11(11):1483–1487.

    Article  PubMed  CAS  Google Scholar 

  67. Guntas G, Ostermeier M. Creation of an allosteric enzyme by domain insertion. J Mol Biol 2004; 336(1):263–273.

    Article  PubMed  CAS  Google Scholar 

  68. Guntas G, Mansell TJ, Kim JR et al. Directed evolution of protein switches and their application to the creation of ligand-binding proteins. Proc Natl Acad Sci USA 2005;102(32):11224–11229.

    Article  PubMed  CAS  Google Scholar 

  69. Truong K, Khorchid A, Ikura M. A fluorescent cassette-based strategy for engineering multiple domain fusion proteins. BMC Biotechnol 2003; 3:8.

    Article  PubMed  Google Scholar 

  70. Jeong J, Kim SK, Ahn J et al. Monitoring of conformational change in maltose binding protein using split green fluorescent protein. Biochem Biophys Res Commun 2006; 339(2):647–651.

    Article  PubMed  CAS  Google Scholar 

  71. Fehr M, Frommer WB, Lalonde S. Visualization of maltose uptake in living yeast cells by fluorescent nanosensors. Proc Natl Acad Sci USA 2002; 99(15):9846–9851.

    Article  PubMed  CAS  Google Scholar 

  72. Nikolaev VO, Gambaryan S, Lohse MJ. Fluorescent sensors for rapid monitoring of intracellular cGMP. Nat Methods 2006 3(1):23–25.

    Article  PubMed  CAS  Google Scholar 

  73. Remus TP, Zima AV, Bossuyt J et al. Biosensors to measure inositol 1,4,5-trisphosphate concentration in living cells with spatiotemporal resolution. J Biol, Chem 2006; 281(1):608–616.

    Article  CAS  Google Scholar 

  74. Deuschle K, Okumoto S, Fehr M et al. Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Sci 2005; 14(9):2304–2314.

    Article  PubMed  CAS  Google Scholar 

  75. Miyawaki A, Llopis J Heim R et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 1997; 388(6645):882–887.

    Article  PubMed  CAS  Google Scholar 

  76. Truong K, Sawano A, Mizuno H et al. FRET-based in vivo Ca2+ imaging by a new calmodulin-GFP fusion molecule. Nat Struct Biol 2001; 8(12):1069–1073.

    Article  PubMed  CAS  Google Scholar 

  77. Miyawaki A, Griesbeck O, Heim R et al. Dynamic and quantitative, Ca2+ measurements using improved cameleons. Proc Natl Acad Sci USA 1999; 96(5):2135–2140.

    Article  PubMed  CAS  Google Scholar 

  78. Braun DC, Garfield SH, Blumberg PM. Analysis by fluorescence resonance energy transfer of the interaction between ligands and protein kinase C delta in the intact cell. J Biol Chem 2005; 280(9):8164–8171.

    Article  PubMed  CAS  Google Scholar 

  79. Schleifenbaum A, Stier G, Gasch A et al. Genetically encoded FRET probe for PKC activity based on pleckstrin. J Am Chem Soc 2004; 126(38):11786–11787.

    Article  PubMed  CAS  Google Scholar 

  80. Sato M, Umezawa Y. Imaging protein phosphorylation by fluorescence in single living cells. Methods 2004; 32(4):451–455.

    Article  PubMed  CAS  Google Scholar 

  81. Wang Y, Botvinick EL, Zhao Y et al. Visualizing the mechanical, activation of Src. Nature 2005; 434(7036):1040–1045.

    Article  PubMed  CAS  Google Scholar 

  82. Chiang JJ, Li I, Truong K. Creation of circularly permutated yellow fluorescent proteins using fluorescence screening and a tandem fusion template. Biotechnol Lett 2006; 28(7):471–475.

    Article  PubMed  CAS  Google Scholar 

  83. Nakamura T, Iwakura M. Circular permutation analysis as a method for distinction of functional elements in the M20 loop of Escherichia coli dihydrofolate reductase. J Biol Chem 1999; 274(27):19041–19047.

    Article  PubMed  CAS  Google Scholar 

  84. Iwakura M, Nakamura T, Yamane C et al. Systematic circular permutation of an entire protein reveals essential folding elements. Nat Struct Biol 2000; 7(7):580–585.

    Article  PubMed  CAS  Google Scholar 

  85. Qian Z, Lutz S. Improving the catalytic activity of Candida antarctica lipase B by circular permutation. J Am Chem Soc 2005; 127(39):13466–13467.

    Article  PubMed  CAS  Google Scholar 

  86. Nagai T, Yamada S, Tominaga T et al. Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc. Natl Acad Sci USA 2004; 101(29):10554–10559.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Li, I.T.S., Pham, E., Truong, K. (2007). Current Approaches for Engineering Proteins with Diverse Biological Properties. In: Chan, W.C.W. (eds) Bio-Applications of Nanoparticles. Advances in Experimental Medicine and Biology, vol 620. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76713-0_2

Download citation

Publish with us

Policies and ethics

Navigation