Genomics of Insect-Soybean Interactions

  • Chapter
Genetics and Genomics of Soybean

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 2))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baldwin, I.T. and Preston, C.A. (1999) The eco-physiological complexity of plant responses to insect herbivores. Planta 208, 137–145.

    Article  CAS  Google Scholar 

  • Bartram, S., Jux, A, Gleixner, G. and Boland, W. (2006) Dynamic pathway allocation in early terpenoid biosynthesis of stress-induced lima bean leaves. Phytochem. 67:1661–1672.

    Article  CAS  Google Scholar 

  • Boerma, H.R. and Walker, D.R. (2005) Discovery and utilization of QTLs for insect resistance in soybean. Genetica 123, 181–189.

    Article  PubMed  Google Scholar 

  • Boethel, D.J. (1999) Assessment of soybean germplasm for multiple insect resistance. In S.L. Clement and S.S. Quisenbury (Eds.) Global Plant Genetic Resources for Insect-Resistant Crops. CRC Press, Boca Raton, FL, pp. 101–129.

    Google Scholar 

  • Broich, S.L. and Palmer, R.G. (1981) Evolutionary studies of the soybean - the frequency and distribution of alleles among collections of Glycine max and Glycine soja of various origin. Euphytica 30: 55–64.

    Article  Google Scholar 

  • Burden, B.J. and Norris, D.M. (1992) Role of the isoflavenoid coumestrol in the constitutive antixenosic properties of “Davis” soybeans against and oligophagous insect, the Mexican bean beetle. J. Chem. Ecol. 18, 1069–1081.

    Article  CAS  Google Scholar 

  • Bowers, G.R. (1990) Registration of ‘Crockett’ soybean. Crop Sci. 30, 427.

    Google Scholar 

  • Caballero, P., Smith, C.M., Fronczek, F.R. and Fischer, N.H. (1986) Isoflavones from an insect-resistant variety of soybean and the molecular structure of afrormosin. J. Nat. Prod. 49,1126–1129.

    Article  CAS  Google Scholar 

  • Clark, W.J., Harris, F.A., Maxwell, F.G. and Hartwig, E.E. (1972) Resistance of certain soybean cultivars to bean leaf beetle, striped blister beetle and bollworm. J. Econ. Entomol. 65,1669–1671.

    Google Scholar 

  • Cooper, W.C., Jia, L. and Goggin, F.L. (2004) Acquired and R-gene mediated resistance against the potato aphid in tomato. J. Chem. Ecol. 30, 2527–2541.

    Article  PubMed  CAS  Google Scholar 

  • Cortés-Cruz, M., Snook, M. and McMullen, M.D. (2003) The genetic basis of C-glycosyl flavone B-ring modification in maize (Zea mays L.) silks. Genome 46, 182–194.

    Article  PubMed  Google Scholar 

  • Desclaux, D., Roumet, P. (1996) Impact of drought stress on the phenology of two soybean cultivars. Field Crops Res. 46, 61–70.

    Article  Google Scholar 

  • Diaz-Montano, J., Reese, J.C., Schapaugh, W.T. and Campbell, L.R. (2006). Characterization of antibiosis and antixenosis to the soybean aphid, (Hemiptera: Aphidae) in several soybean genotypes. J. Econ. Entomol. 99. 1884–1889.

    PubMed  Google Scholar 

  • Fischer, D.C., Kogan, M. and Paxton, J. (1990) Effect of glyceollin, a soybean phytoalexin, on feeding by three phytophagous beetles (Coleoptera: Coccinellidae and Chrysomelidae): dose versus response. Environ. Entomol. 9, 1278–1282.

    Google Scholar 

  • Goggin, F.L., Williamson, V.M. and Ullman, D.E. (2001) Variability in the response of Macrosiphum euphorbiae and Myzus persicae (Hemiptera : Aphididae) to the tomato resistance gene Mi. Environ. Entomol. 30, 101–106.

    Google Scholar 

  • Goldberg, R.B., Bake, S.J., Perez-Grace, L. (1989) Regulation of gene expression during plant embryogenesis. Cell 56, 149–160.

    Article  PubMed  CAS  Google Scholar 

  • Gould, F., Anderson, A. Reynolds, A., Bumbarner, L. and W. Moar, W. (1995) Selection and genetic analysis of a Heliothis virescens (Lepidoptera: Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins. J. Econ. Entomol. 88, 1545–1559.

    Google Scholar 

  • Gray, D.J., Lambert, L. and Ouzts, J.D. (1985). Evaluation of soybean plant introductions for resistance to foliar feeding insects. J. Miss. Acad. Sci. 30, 67–82.

    Google Scholar 

  • Haile, F.J., Higley, L.G. and Specht, J.E. (1998) Soybean cultivars and insect defoliation: Yield loss and economic injury levels. Agron. J. 90, 344–352.

    Google Scholar 

  • Haile, F.J., Higley, L.G., Specht, J.E. and Spomer, S.M. (1998) Soybean leaf morphology and defoliation tolerance. Agron. J. 90, 353–362.

    Google Scholar 

  • Hammond, R.B., Bledsoe, L.W. and Anwar, M.N. (1995) Maturity and environmental effects on soybean resistant to Mexican bean beetle (Coleoptera: Coccinellidae). J. Econ. Entomol. 88, 175–181.

    Google Scholar 

  • Hart, S.V., Kogan, M. and Paxton, J.D. (1983) Effect of soybean phytoalexins on the herbivorous insects Mexican bean beetle and soybean looper. J. Chem. Ecol. 9, 657–673.

    Article  CAS  Google Scholar 

  • Hartwig, E.E., Kilen, T.C. and Young, L.D (1994) Registration of ‘Lyon’ soybean. Crop Sci.34, 1412.

    Google Scholar 

  • Hartwig, E.E., Lambert, L. and Kilen, T.C. (1990) Registration of ‘Lamar’ soybean. Crop Sci.30, 231.

    Google Scholar 

  • Hatchett, J.H., Beland, G.L. and Kilen, T.C. (1979) Identification of multiple insect resistantsoybean lines. Crop Sci. 19, 557–559.

    Google Scholar 

  • Hill, C.B., Li, Y. and Hartman, G.L. (2004) Resistance to the soybean aphid in soybean germplasm. Crop Sci. 44, 98–106.

    Google Scholar 

  • Hill, C.B., Li, Y. and Hartman, G.L. (2006a) A single dominant gene for resistance to the soybean aphid in the soybean cultivar Dowling. Crop Sci. 46, 1601–1605.

    Google Scholar 

  • Hill, C.B., Li, Y. and Hartman, G.L. (2006b) Soybean aphid resistance in soybean Jackson is controlled by a single dominant gene. Crop Sci. 46, 1606–1608.

    Google Scholar 

  • Hill, J.H., Alleman, R., Hogg, D.B. and Grau, C.R. (2001) First report of transmission of Soybean mosaic virus and Alfalfa mosaic virus by Aphis glycines in the New World. Plant Dis. 85, 561.

    Article  Google Scholar 

  • Hoffman-Campo, C.L., Ramos Neto, J.A., Neves de Oliveira, M.C. and Jacob Oliveira, L. (2006). Detrimental effect of rutin on Anticarsia gemmatalis. Pesq. agropec. bras. 41, 1453–1459.

    Article  Google Scholar 

  • Hollowell, E.A. and Johnson, T.W. (1934) Correlation between rough-hairy pubescence in soybean and freedom from injury by Empoasca fabae. Phytopath. 24, 12.

    Google Scholar 

  • Hubick, K.T., Farquhar, G.D., Shorter, R. (1986) Correlation between water-use efficiency and carbon isotope discrimination in diverse pea nut (Arachis) germplasms. Aust. J. Plant Physiol. 13, 803–816.

    CAS  Google Scholar 

  • Hulburt, D.J. (2001) Identifying additional insect resistance quantitative trait loci in soybean using simple sequence repeats. M.S. Thesis, University of Georgia, Athens, GA.

    Google Scholar 

  • Hulburt, D.J., Boerma, H.R. and All, J.N. (2004) Effect of pubescence tip on soybean resistance to lepidopteran insects. J. Econ. Entomol. 97, 621–627.

    PubMed  Google Scholar 

  • Islas-Rubio, A.R. and Higuera-Ciapara, I. (2003) XXI: Soybean: Post-harvest operations. In: Mejía, D. And Lewis, B. (Eds). Compendium on Post-harvest Operations. Information Network on Post-harvest Operations (INPhO). FAO, www.fao.org/inpho.

    Google Scholar 

  • Johnson, T.W. and Hollowell, E.A. (1935) Pubescent and glabrous character of soybeans as related to injury by the potato leafhopper, J. Agric. Res. 51, 371–381.

    Google Scholar 

  • Kaloshian, I., Kinsey, M.G., Williamson, V.M. and Ullman, D.E. (2000) Mi-mediated resistance against the potato aphid Macrosiphum euphorbiae (Hemiptera: Aphidae) limits sieve element ingestion. Environ. Entomol. 29, 690–695.

    Google Scholar 

  • Kenty, M.M., Hinson, K., Quesenberry, K.H. and Wofford, D. (1996) Inheritance of resistance to the soybean looper in soybean. Crop Sci. 36, 1532–1537.

    Google Scholar 

  • Kilen, T.C., Hatchett, J.H. and Hartwig, E.E. (1977) Evaluation of early generation soybean for resistance to soybean looper. Crop Sci. 17, 397–398.

    Google Scholar 

  • Kilen, T.C. and Lambert, L. (1986) Evidence for different genes controlling insect resistance in three soybean genotypes. Crop Sci. 26, 869–871.

    Google Scholar 

  • Klinger, J., Creasy, R., Gao, L., Nair, R.M., Calix, A.S., Jacob, H.S., Edwards, O.R. and Singh, K.B. (2005) Aphid resistance in Medicago truncatulata involves antixenosis and phloem-specific, inducible antibiosis and maps to a single locus flanked by NBS-LRR resistance gene analogs. Plant Physiol. 137, 1445–1455.

    Article  CAS  Google Scholar 

  • Kogan, M. and Ortman, E.E. (1978) Antixenosis - a new term proposed to define Painter’s“nonpreference” modality of resistance. Bull. Entomol. Soc. Am. 24, 175–176.

    Google Scholar 

  • Komatsu, K., Okuda, S., Takahashi, M., Matsunaga, R. and Nakazawa, Y. (2005) QTL map** of antibiosis to common cutworm (Spodoptera litura Fabricius) in soybean. Crop Sci. 45,2044–2048.

    Article  CAS  Google Scholar 

  • Lambert, L. and Heatherly, L.G. (1991) Soil water potential: effects on soybean looper feeding on soybean leaves. Crop Sci. 31, 125–1628.

    Google Scholar 

  • Lambert, L. and Kilen, T.C. (1984a) Multiple insect resistance in several soybean genotypes. Crop Sci. 24, 887–890.

    Google Scholar 

  • Lambert, L. and Kilen, T.C. (1984b) Influences of three soybean genotypes and their F1 intercrosses on the development of five insect species. J. Econ. Entomol. 77, 622–625.

    Google Scholar 

  • Lambert, L. and Tyler, J. (1999) An appraisal of insect resistant soybeans. In: J.A. Webster and B.R. Wiseman (Eds.), Economic, Environmental, and Social Benefits of Insect Resistance in Field Crops. Thomas Say, Lanham, MD. pp. 131–148.

    Google Scholar 

  • Lee, S.I., Le,e S.H., Koo, J.C., Chun, H.J., Lim, C.O., Mun, J.H., Song. Y.H. and Cho, M.J. (1999) Soybean Kunitz trypsin inhibitor (SKTI) confers resistance to the brown planthopper (Nilaparvata lugens Stal) in transgenic rice. Mol. Breed. 5, 1–9.

    Article  Google Scholar 

  • Li, Y., Hill, C.B., Carlson, S.B., Diers, D.W., and Hartman, G.L. (2007) Soybean aphid resistance genes in the soybean cultivars Dowling and Jackson map to linkage group M. Mol. Breed. 19, 25–34.

    Article  CAS  Google Scholar 

  • Liu, S.H., Norris, D.M. and Lyne, P. (1989) Volatiles from the foliage of soybean, Glycine max, and lima bean, Phaseolus lunatus: their behavioral effects on the insects Trichoplusia ni and Epilachna varivestis. J. Agric. Food Chem. 37, 496–501.

    Article  CAS  Google Scholar 

  • Liu, F., VanToai, T.T., Moy, L., Bock, G., Linford, L. D., Quackenbush, J. (2005) Global transcription profiling reveals novel insights into hypoxic response in Arabidopsis. Plant Physiol. 137, 1115–1129.

    Article  PubMed  CAS  Google Scholar 

  • Mensah, C., DiFonzo, C., Nelson, R.L. and Wang, D. (2005) Resistance to soybean aphid in early maturing soybean germplasm. Crop Sci. 45, 2228–2233.

    Article  Google Scholar 

  • McPherson, R.M. (2004) XVIII. Soybean insects. In: Gillebeau, P., Hinkle, N., and Roberts, P. (Eds). Summary of Losses from Insect Damage and Cost of Control in Georgia 2004. Georgia Cooperative Extension Service. Pp 37–38.

    Google Scholar 

  • Milligan, S.B., Bodeau, J., Yaghoobi, J., Kaloshian, I., Zabel, P. and Williamson, V.M. (1998) The root-knot nematode resistance gene Mi from tomato is a member of leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10, 1307–1319.

    Article  PubMed  CAS  Google Scholar 

  • Miranda, M., Borisjuk, L., Tewes, A., Dietrich, D., Rentsch, D., Weber, H., Wobus, U. (2003) Peptide and amino acid transporters are differentially regulated during seed development and germination in faba bean. Plant Physiol. 132, 1950–1960.

    Article  PubMed  CAS  Google Scholar 

  • Momen, N.N., Carlson, R.E., Shaw, R.H., Arjmand, O. (1979) Moisture stress effects on the yield components of two soybean cultivars. Agron. J. 71, 86–90.

    Google Scholar 

  • Narvel, J.M., Walker, D.R., Rector, B.G., All, J.N., Parrott, W.A. and Boerma, H.R. (2001) A retrospective DNA marker assessment to the development of insect resistant soybean. Crop Sci. 41, 1931–1939.

    CAS  Google Scholar 

  • Nault, B.A., All, J.N. and Boerma, H.R. (1992) Resistance in vegetative and reproductive stages of a soybean breeding line to three defoliating pests (Lepidoptera: Noctuidae). J. Econ. Entomol. 85, 1507–1515.

    Google Scholar 

  • Nielsen, N.C. (1996) Soybean seed composition. In: Soybean: Genetics, Molecular Biology, and Biotechnology. Biotechnology in Agriculture, D.P.S. Verma, R.C Shoemaker (Eds.) No. 14, CAB International, Wallingford, UK, pp. 127–163.

    Google Scholar 

  • Painter, R.H. (1941) The economic value and biological significance of insect resistance in plants. J. Econ. Entomol. 34, 358–367.

    Google Scholar 

  • Painter, R.H. (1951) Insect Resistance in Crop Plants. Macmillan & Sons, New York.

    Google Scholar 

  • Rector, B.G., All, J.N., Parrott, W.A. and Boerma, H.R. (1998) Identification of molecular markers associated with quantitative trait loci for soybean resistance to corn earworm. Theor. Appl. Genet. 96, 786–790.

    Article  CAS  Google Scholar 

  • Rector, B.G., All, J.N., Parrott, W.A. and Boerma, H.R. (1999) Quantitative trait loci for antixenosis resistance to corn earworm. Crop Sci. 39, 531–538.

    Google Scholar 

  • Rector, B.G., All, J.N., Parrott, W.A. and Boerma, H.R. (2000) Quantitative trait loci for antibiosis resistance to corn earworm in soybean. Crop Sci. 40, 233–238.

    Google Scholar 

  • Rennie, B.D., Tanner, J.W. (1989) Fatty acid composition of oil from soybean seeds grown at extreme temperatures. J. Am. Oil Chem. Soc. 66, 1622–1624.

    Article  CAS  Google Scholar 

  • Reymond, P., Weber, H., Damond, M. and Farmer, E.E. (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12,707–719.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, G.W. and Smith, C.M. (1985) Effects of leaf position, leaf wounding, and plant age of two soybean genotypes on soybean looper (Lepidoptera: Noctuidae) growth. Environ. Entomol. 14, 475–478.

    Google Scholar 

  • Rowan, G.B., Boerma, H.R., All, J.N. and Todd, J. (1993) Soybean maturity effect on expression of resistance to Lepidopteran insects. Crop Sci. 33, 618–622.

    Google Scholar 

  • Rufener, G.K., II, St. Martin, S.K., Cooper, R.C. and Hammond, R.B. (1989) Genetics of antibiosis resistance to Mexican bean beetle in soybean. Crop Sci. 29, 618–622.

    Google Scholar 

  • Sales, M.P., Pimenta, P.P., Paes, N.S., Grossi-de-Sa, M.F. and Xavier, J. (2001) Vicilins (7S storage globulins) of cowpea (Vigna unguiculata) seeds bind to chitinous structures of the midgut of Callosobruchus maculatus (Coleoptera : Bruchidae) larvae. Braz. J Med. Biol. Res. 34.27–34.

    Article  PubMed  CAS  Google Scholar 

  • Shukle, R.H. and Wu, L. (2003) The role of protease inhibitors and parasitoids on the population dynamics of Sitotroga cerealella (Lepidoptera: Gelechiidae). Environ. Entomol. 32, 488–498.

    CAS  Google Scholar 

  • Sisson, V.A., Miller, P.A., Campbell, W.V. and Van Duyn, J.W. (1976) Evidence of inheritance of resistance to the Mexican bean beetle in soybeans. Crop Sci. 16:835–837.

    Google Scholar 

  • Smith, C.M. (1985) Expression, mechanisms and chemistry of resistance in soybean, Glycine max L. (Merr.) to the soybean looper, Pseudoplusia includens (Walker). Insect Sci. Applic. 6,243–248.

    CAS  Google Scholar 

  • Smith, C.M. and Brim,C.A. (1979a) Field and laboratory evaluations of soybean lines for resistance to corn earworm feeding. J. Econ. Entomol. 72, 78–80.

    Google Scholar 

  • Smith, C.M. and Brim,C.A. (1979b) Resistance to the Mexican bean beetle and corn earworm in soybean genotypes derived from PI 227687. Crop Sci. 19, 313–314.

    Google Scholar 

  • Smith, C.M. and Fischer, N.H. (1983) Chemical factors of an insect resistant soybean genotype affecting growth and survival of the soybean looper. Entomol. Exper. Applic. 33,343–345.

    CAS  Google Scholar 

  • Smith, T.J., Camper Jr., H.M. and Schillinger, J.A. (1975) Registration of Shore soybean. Crop Sci. 15, 100.

    Google Scholar 

  • Song, Q.J., Marek, L.F., Shoemaker, R.C, Lark, K.G., Concibido, V.C., Delannay, X., Specht, J.E. and Cregan, P.B. (2004) A new integrated genetic linkage map of the soybean. Theor. Appl. Genet. 109, 122–128.

    Article  PubMed  CAS  Google Scholar 

  • Tabashnik, B.E., Carriere, Y., Dennehy, T.J., Morin, S., Sisterson, M.S., Roush, R.T., Shelton, A.M. and Zhao, J.Z. (2003) Insect resistance to transgenic Bt crops: Lessons from the laboratory and field. J. Econ. Entomol. 96:1031–1038.

    Article  PubMed  CAS  Google Scholar 

  • Terry, L.I., Chase, K., Jarvik, T., Orf, J., Mansur, L. and Lark, K.G. (2000) Soybean quantitative trait loci for resistance to insects. Crop Sci. 40, 375–382.

    CAS  Google Scholar 

  • Turner, N.C. (2000) Drought resistance: A comparsion of two frame works. In: Management of Agricultural Drought: Agronomic and Genetic Options. N.P. Saxena, C. Johansen, Y.S. Chauhan, R.C.N. Rao (Eds.), Oxford and IBH, New Delhi.

    Google Scholar 

  • Turnipseed, S.G. (1977) Influence of trichome density on populations of small phytophagous insects on soybean. Environ. Entomol. 6, 815–817.

    Google Scholar 

  • Turnipseed, S.G. and Kogan, M. (1987) Integrated control of insects. In: J.R. Wilcox (Ed.), Soybeans: Improvement, Production, and Uses. ASA, CSSA and SSSA, Madison, pp. 779–817.

    Google Scholar 

  • van der Biezen, E.A. and Jones, J.D.G. (1998) Plant disease resistance proteins and the gene-for-gene concept. Trends Biochem. Sci. 23, 454–456.

    Article  PubMed  Google Scholar 

  • Van Duyn, J.W., Turnipseed, S.G. and Maxwell, J.D. (1971) Resistance in soybeans to the Mexican bean beetle. I. Sources of resistance. Crop Sci. 11, 572–573.

    Google Scholar 

  • Van Duyn, J.W., Turnipseed, S.G. and Maxwell, J.D. (1972) Resistance in soybeans to the Mexican bean beetle. II. Reactions of the beetle to resistant plants. Crop Sci. 12, 561–562.

    Google Scholar 

  • Walker, D.R., Narvel, J.M., Boerma, H.R., All, J.N. and Parrott. W.A. (2004) A QTL that enhances and broadens Bt insect resistance in soybean. Theor. Appl. Genet. 109, 1051–1057.

    Article  PubMed  Google Scholar 

  • Walling, L.L. (2000) The myriad plant responses to herbivores. J. Plant Growth Reg. 19, 195–216.

    CAS  Google Scholar 

  • Yencho, G.C., Cohen, M.B. and Byrne, P.F. (2000) Applications of tagging and map** insect resistance loci in plants. Ann. Rev. Entomol. 45, 393–422.

    Article  CAS  Google Scholar 

  • Yunes, A.N.A., de Andrade, M.T., Sales, M.P., Morais, R.A., Fernandes, K.V.S., Gomes, V.M. and Xavier-Filho, J. (1998) Legume seed vicilins (7S storage proteins) interfere with the development of the cowpea weevil (Callosobruchus maculatus (F)). J. Sci. Food Agric. 76, 111–116.

    Article  CAS  Google Scholar 

  • Zhang, P., Wang, Y., Zhang, J., Maddock, S., Snook, M. and Peterson, T. (2003) A maize QTL for silk maysin levels contains duplicated Myb-homologous genes which jointly regulate flavone biosynthesis. Plant Mol. Biol. 52, 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, S., Walker, D.R., Boerma, H.R., All, J.N. and Parrott W.A.(2006) Fine map** of a major insect resistance QTL in soybean and its interaction with minor resistance QTLs. Crop Sci. 46, 1094–1099.

    Article  Google Scholar 

  • Zhu, S., Walker, D.R, Warrington, C.V., Parrott, W.A., All, J.N., Wood, E.D. and Boerma, H.R. (2007) Registration of four soybean germplasm lines containing defoliating insect resistance QTLs from PI 229358 introgressed into ‘Benning’. J. of Plant Registrations 1, 162–163.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Parrott, W., Walker, D., Zhu, S., Boerma, H.R., All, J. (2008). Genomics of Insect-Soybean Interactions. In: Stacey, G. (eds) Genetics and Genomics of Soybean. Plant Genetics and Genomics: Crops and Models, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72299-3_15

Download citation

Publish with us

Policies and ethics

Navigation