On Global Minimization in Mathematical Modelling of Engineering Applications

  • Chapter
Models and Algorithms for Global Optimization

Part of the book series: Optimization and Its Applications ((SOIA,volume 4))

Abstract

Many problems in engineering, physics, economic and other subjects may be formulated as optimization problems, where the minimum value of an objective function should be found. Mathematically the problem is formulated as follows

$$ f* = \mathop {\min }\limits_{X \in D} f(X), $$
((1))

where f(X) is an objective function, X are decision variables, and D is a search space. Besides of the minimum f*, one or all minimizers X* : f (X*) = f* should be found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baravykaitė, M., Belevičius, R., Čiegis, R.: One application of the parallelization tool of Master-Slave algorithms. Informatica, 13(4), 393–404 (2002)

    Google Scholar 

  2. Baravykaitė, M., Čiegis, R., Žilinskas, J.: Template realization of generalized Branch and Bound algorithm. Matematical Modelling and Analysis, 10, 217–236 (2005)

    Google Scholar 

  3. Baronas, R., Ivanauskas, F., Sapagovas, M.: Modelling of wood drying and an influence of lumber geometry on drying dynamics. Nonlinear Analysis: Modelling and Control, 4, 11–21 (1999)

    MATH  Google Scholar 

  4. Belevičius, R., Valentinavičius, S., Michnevič, E.: Multilevel optimization of grillages. Journal of Civil Engineering and Management, 8(1), 98–103 (2002)

    Google Scholar 

  5. Čiegis, R., Baravykaitė, M., Belevičius, R.: Parallel global optimization of foundation schemes in civil engineering. In: Dongarra, J., Madsen, K, Wasniewski, J. (eds) PARA04, Workshop on State of the Art in Scientific Computing. Lecture Notes in Computer Science, Vol. 3732, Springer, 305–312 (2005)

    Google Scholar 

  6. Čiegis, R., Starikovičius, V.: Mathematical modeling of wood drying process. Mathematical Modelling and Analysis, 7(2), 177–190 (2002)

    MathSciNet  Google Scholar 

  7. Čiegis, R., Starikovičius, V., Štikonas, A.: Parameters identification algorithms for wood drying modeling. In: Buikis, A., Čiegis, R., Fitt, A.D. (eds) Progress in Industrial Mathematics at ECMI2002. Mathematics in Industry-ECMI Subseries, Vol. 5, Springer, Berlin Heidelberg New York, 107–112 (2004)

    Google Scholar 

  8. Kim, K., Lee, S., Chung, C, Lee, H.: Optimal pile placement for minimizing differential settlements in piled raft foundations. http://strana.snu.ac.kr/laboratory/publications (2004)

    Google Scholar 

  9. Pedersen, P.: Design for minimum stress concentration — some practical aspects. In: Structural Optimization. Kluwer Academic, 225–232 (1989)

    Google Scholar 

  10. Perre, P., Mosnier, S.: Vacuum drying with radiative heating. Vacuum Drying of Wood, 95, (1995)

    Google Scholar 

  11. Plumb, O., Spolek, G., Olmstead, B.: Heat and mass transfer in wood during drying. Int. J. Heat Mass Transfer, 28(9), 1669–1678 (1985)

    Article  Google Scholar 

  12. Simpson, W.T., Liu, J.T.: An optimization technique to determine red oak surface and internal moisture transfer coefficients during drying. Wood Fiber Sci., 29(4), 312–318 (1997)

    Google Scholar 

  13. Tichonov, A., Arsenin, V.: Methods for Solution of Ill-posed Problems. Nauka, Moscow (1986)

    Google Scholar 

  14. Žilinskas, J.: Black box global optimization inspired by interval methods. Information Technology and Control, 21(4), 53–60 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Čiegis, R. (2007). On Global Minimization in Mathematical Modelling of Engineering Applications. In: Törn, A., Žilinskas, J. (eds) Models and Algorithms for Global Optimization. Optimization and Its Applications, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-36721-7_18

Download citation

Publish with us

Policies and ethics

Navigation