Humanized Severe Combined Immunodeficient (SCID) Mouse Models for Varicella-Zoster Virus Pathogenesis

  • Chapter
  • First Online:
Varicella-zoster Virus

Abstract

Varicella-zoster virus (VZV) is a human-restricted virus, which raises obstacles to research. The strict human tropism limits knowledge about its pathogenesis and creates challenges for evaluating antiviral treatments and vaccines. The development of humanized mouse models was driven by the need to address these challenges. Here, we summarize the humanized mouse models with xenografts of thymus/liver organoids, skin, dorsal root ganglia, and lung tissues. These models revealed VZV ORFs involved in cell tropism and pathogenesis in differentiated tissues, and made it possible to evaluate antiviral compounds in a mammalian system. Further development of skin organ culture techniques have the added benefit of lower cost and greater speed than mouse models. Human tissues, both in humanized mice and in ex vivo models, will continue to be necessary to study VZV in the tissue microenvironements to which it is adapted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 168.79
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 168.79
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abeynaike S, Paust S (2021) Humanized mice for the evaluation of novel HIV-1 therapies. Front Immunol 12:636775

    Google Scholar 

  • Akkina R (2013) New generation humanized mice for virus research: comparative aspects and future prospects. Virology 435:14–28

    Article  CAS  PubMed  Google Scholar 

  • Anonymous (2021) Important factors for experimental success in xenograft host selection. Taconic Biosciences, Inc.

    Google Scholar 

  • Arnold N, Girke T, Sureshchandra S, Nguyen C, Rais M, Messaoudi I (2016) Genomic and functional analysis of the host response to acute simian varicella infection in the lung. Sci Rep 6:34164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aryee KE, Shultz LD, Brehm MA (2014) Immunodeficient mouse model for human hematopoietic stem cell engraftment and immune system development. Methods Mol Biol 1185:267–278

    Article  PubMed  PubMed Central  Google Scholar 

  • Berarducci B, Rajamani J, Zerboni L, Che X, Sommer M, Arvin AM (2010) Functions of the unique N-terminal region of glycoprotein E in the pathogenesis of varicella-zoster virus infection. Proc Natl Acad Sci U S A 107:282–287

    Article  CAS  PubMed  Google Scholar 

  • Besser J, Sommer MH, Zerboni L, Bagowski CP, Ito H, Moffat J, Ku CC, Arvin AM (2003) Differentiation of varicella-zoster virus ORF47 protein kinase and IE62 protein binding domains and their contributions to replication in human skin xenografts in the SCID-hu mouse. J Virol 77:5964–5974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonyhadi ML, Rabin L, Salimi S, Brown DA, Kosek J, McCune JM, Kaneshima H (1993) HIV induces thymus depletion in vivo. Nature 363:728–732

    Article  CAS  PubMed  Google Scholar 

  • Buckingham EM, Girsch J, Jackson W, Cohen JI, Grose C (2018) Autophagy quantification and STAT3 expression in a human skin organ culture model for innate immunity to herpes zoster. Front Microbiol 9:2935

    Article  PubMed  PubMed Central  Google Scholar 

  • Che X, Reichelt M, Sommer MH, Rajamani J, Zerboni L, Arvin AM (2008) Functions of the ORF9-to-ORF12 gene cluster in varicella-zoster virus replication and in the pathogenesis of skin infection. J Virol 82:5825–5834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiner E, Ballester I, Betlloch I, Blanquer J, Aguar MC, Blanquer R, Fernandez-Fabrellas E, Andreu AL, Briones M, Sanz F (2010) Varicella-zoster virus pneumonia in an adult population: has mortality decreased? Scand J Infect Dis 42:215–221

    Article  CAS  PubMed  Google Scholar 

  • Coolen NA, Schouten KC, Middelkoop E, Ulrich MM (2010) Comparison between human fetal and adult skin. Arch Dermatol Res 302:47–55

    Article  PubMed  Google Scholar 

  • De C, Liu D, Zheng B, Singh US, Chavre S, White C, Arnold RD, Hagen FK, Chu CK, Moffat JF (2014) Beta-l-1-[5-(E-2-bromovinyl)-2-(hydroxymethyl)-1,3-(dioxolan-4-yl)] uracil (l-BHDU) prevents varicella-zoster virus replication in a SCID-Hu mouse model and does not interfere with 5-fluorouracil catabolism. Antiviral Res 110:10–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dittmer D, Stoddart C, Renne R, Linquist-Stepps V, Moreno ME, Bare C, McCune JM, Ganem D (1999) Experimental transmission of Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) to SCID-hu Thy/Liv mice. J Exp Med 190:1857–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gobbi A, Stoddart CA, Malnati MS, Locatelli G, Santoro F, Abbey NW, Bare C, Linquist-Stepps V, Moreno MB, Herndier BG, Lusso P, McCune JM (1999) Human herpesvirus 6 (HHV-6) causes severe thymocyte depletion in SCID-hu Thy/Liv mice. J Exp Med 189:1953–1960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gobbi A, Stoddart CA, Locatelli G, Santoro F, Bare C, Linquist-Stepps V, Moreno ME, Abbey NW, Herndier BG, Malnati MS, McCune JM, Lusso P (2000) Coinfection of SCID-hu Thy/Liv mice with human herpesvirus 6 and human immunodeficiency virus type 1. J Virol 74:8726–8731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haberthur K, Meyer C, Arnold N, Engelmann F, Jeske DR, Messaoudi I (2014) Intrabronchial infection of rhesus macaques with simian varicella virus results in a robust immune response in the lungs. J Virol 88:12777–12792

    Article  PubMed  PubMed Central  Google Scholar 

  • Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, Ueyama Y, Koyanagi Y, Sugamura K, Tsuji K (2002) NOD/SCID/γ c null mouse: an excellent recipient mouse model for engraftment of human cells. Blood, J Am Soc Hematol 100:3175–3182

    CAS  Google Scholar 

  • Jarosinski KW, Carpenter JE, Buckingham EM, Jackson W, Knudtson K, Moffat JF, Kita H, Grose C (2018) Cellular stress response to varicella-zoster virus infection of human skin includes highly elevated interleukin-6 expression. Open Forum Infect Dis 5:ofy118

    Google Scholar 

  • Keil T, Liu D, Lloyd M, Coombs W, Moffat J, Visalli R (2020) DNA encapsidation and capsid assembly are underexploited antiviral targets for the treatment of herpesviruses. Front Microbiol 11:1862

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelland L (2004) “Of mice and men”: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur J Cancer 40:827–836

    Article  CAS  PubMed  Google Scholar 

  • Koropchak CM, Solem SM, Diaz PS, Arvin AM (1989) Investigation of varicella-zoster virus infection of lymphocytes by in situ hybridization. J Virol 63:2392–2395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ku CC, Zerboni L, Ito H, Graham BS, Wallace M, Arvin AM (2004) Varicella-zoster virus transfer to skin by T Cells and modulation of viral replication by epidermal cell interferon-alpha. J Exp Med 200:917–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ku CC, Besser J, Abendroth A, Grose C, Arvin AM (2005) Varicella-Zoster virus pathogenesis and immunobiology: new concepts emerging from investigations with the SCIDhu mouse model. J Virol 79:2651–2658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X (2020) Top tips on selecting the “Best” immunodeficient mouse model for your research. https://www.jax.org/news-and-insights/jax-blog/2020/may/top-tips-selecting-the-best-immunodeficient-mouse-model-for-your-research

  • Lloyd MG, Liu D, Lyu J, Fan J, Overhulse J, Kashemirov BA, Prichard MN, McKenna CE, Moffat JF (2022a) An acyclic phosphonate prodrug of HPMPC is effective against VZV in skin organ culture and mice. Antiviral Res 199:105275

    Google Scholar 

  • Lloyd MG, Liu D, Legendre M, Markovitz DM, Moffat JF (2022b) H84T BanLec has broad spectrum antiviral activity against human herpesviruses in cells, skin, and mice. Sci Rep 12:1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd MG, Smith NA, Tighe M, Travis KL, Liu D, Upadhyaya PK, Kinchington PR, Chan GC, Moffat JF (2020) A novel human skin tissue model to study varicella-zoster virus and human cytomegalovirus. J Virol 94

    Google Scholar 

  • Lockworth CR, Kim S-J, Liu J, Palla SL, Craig SL (2015) Effect of enrichment devices on aggression in manipulated nude mice. J Am Assoc Lab Anim Sci 54:731–736

    PubMed  PubMed Central  Google Scholar 

  • Marx A (2020) The normal thymus, pp 1–10. In: Jain D, Bishop JA, Wick MR (eds), Atlas of thymic pathology. https://doi.org/10.1007/978-981-15-3164-4_1. Springer Singapore, Singapore

  • McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL (1988) The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 241:1632–1639

    Article  CAS  PubMed  Google Scholar 

  • McCune JM, Namikawa R, Shih CC, Rabin L, Kaneshima H (1990) Suppression of HIV infection in AZT-treated SCID-hu mice. Science 247:564–566

    Article  CAS  PubMed  Google Scholar 

  • McCune J, Kaneshima H, Krowka J, Namikawa R, Outzen H, Peault B, Rabin L, Shih CC, Yee E, Lieberman M et al (1991) The SCID-hu mouse: a small animal model for HIV infection and pathogenesis. Annu Rev Immunol 9:399–429

    Article  CAS  PubMed  Google Scholar 

  • Messaoudi I, Barron A, Wellish M, Engelmann F, Legasse A, Planer S, Gilden D, Nikolich-Zugich J, Mahalingam R (2009) Simian varicella virus infection of rhesus macaques recapitulates essential features of varicella zoster virus infection in humans. PLoS Pathog 5:e1000657

    Google Scholar 

  • Mocarski ES, Bonyhadi M, Salimi S, McCune JM, Kaneshima H (1993) Human cytomegalovirus in a SCID-hu mouse: thymic epithelial cells are prominent targets of viral replication. Proc Natl Acad Sci USA 90:104–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moffat JF, Stein MD, Kaneshima H, Arvin AM (1995) Tropism of varicella-zoster virus for human CD4+ and CD8+ T lymphocytes and epidermal cells in SCID-hu mice. J Virol 69:5236–5242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moffat JF, Zerboni L, Kinchington PR, Grose C, Kaneshima H, Arvin AM (1998a) Attenuation of the vaccine Oka strain of varicella-zoster virus and role of glycoprotein C in alphaherpesvirus virulence demonstrated in the SCID-hu mouse. J Virol 72:965–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moffat JF, Zerboni L, Sommer MH, Heineman TC, Cohen JI, Kaneshima H, Arvin AM (1998b) The ORF47 and ORF66 putative protein kinases of varicella-zoster virus determine tropism for human T cells and skin in the SCID-hu mouse. Proc Natl Acad Sci USA 95:11969–11974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moffat J, Ito H, Sommer M, Taylor S, Arvin AM (2002) Glycoprotein I of varicella-zoster virus is required for viral replication in skin and T cells. J Virol 76:8468–8471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair AB, Jacob S (2016) A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7:27–31

    Article  PubMed  PubMed Central  Google Scholar 

  • Namikawa R, Kaneshima H, Lieberman M, Weissman IL, McCune JM (1988) Infection of the SCID-hu mouse by HIV-1. Science 242:1684–1686

    Article  CAS  PubMed  Google Scholar 

  • Niizuma T, Zerboni L, Sommer MH, Ito H, Hinchliffe S, Arvin AM (2003) Construction of varicella-zoster virus recombinants from parent Oka cosmids and demonstration that ORF65 protein is dispensable for infection of human skin and T cells in the SCID-hu mouse model. J Virol 77:6062–6065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver SL, Zerboni L, Sommer M, Rajamani J, Arvin AM (2008) Development of recombinant varicella-zoster viruses expressing luciferase fusion proteins for live in vivo imaging in human skin and dorsal root ganglia xenografts. J Virol Methods 154:182–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel NP, Vukmanovic-Stejic M, Suarez-Farinas M, Chambers ES, Sandhu D, Fuentes-Duculan J, Mabbott NA, Rustin MHA, Krueger J, Akbar AN (2018) Impact of zostavax vaccination on T-cell accumulation and cutaneous gene expression in the skin of older humans after varicella zoster virus antigen-specific challenge. J Infect Dis 218:S88–S98

    Article  PubMed  PubMed Central  Google Scholar 

  • Popescu D-M, Botting RA, Stephenson E, Green K, Webb S, Jardine L, Calderbank EF, Polanski K, Goh I, Efremova M, Acres M, Maunder D, Vegh P, Gitton Y, Park J-E, Vento-Tormo R, Miao Z, Dixon D, Rowell R, McDonald D, Fletcher J, Poyner E, Reynolds G, Mather M, Moldovan C, Mamanova L, Greig F, Young MD, Meyer KB, Lisgo S, Bacardit J, Fuller A, Millar B, Innes B, Lindsay S, Stubbington MJT, Kowalczyk MS, Li B, Ashenberg O, Tabaka M, Dionne D, Tickle TL, Slyper M, Rozenblatt-Rosen O, Filby A, Carey P, Villani A-C, Roy A, Regev A, Chédotal A et al (2019) Decoding human fetal liver haematopoiesis. Nature 574:365–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichelt M, Zerboni L, Arvin AM (2008) Mechanisms of varicella-zoster virus neuropathogenesis in human dorsal root ganglia. J Virol 82:3971–3983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichelt M, Wang L, Sommer M, Perrino J, Nour AM, Sen N, Baiker A, Zerboni L, Arvin AM (2011) Entrapment of viral capsids in nuclear PML cages is an intrinsic antiviral host defense against varicella-zoster virus. PLoS Pathog 7:e1001266

    Google Scholar 

  • Rowe J, Greenblatt RJ, Liu D, Moffat JF (2010) Compounds that target host cell proteins prevent varicella-zoster virus replication in culture, ex vivo, and in SCID-Hu mice. Antiviral Res 86:276–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadzot-Delvaux C, Merville-Louis MP, Delree P, Marc P, Piette J, Moonen G, Rentier B (1990) An in vivo model of varicella-zoster virus latent infection of dorsal root ganglia. J Neurosci Res 26:83–89

    Article  CAS  PubMed  Google Scholar 

  • Santos RA, Hatfield CC, Cole NL, Padilla JA, Moffat JF, Arvin AM, Ruyechan WT, Hay J, Grose C (2000) Varicella-zoster virus gE escape mutant VZV-MSP exhibits an accelerated cell-to-cell spread phenotype in both infected cell cultures and SCID-hu mice. Virology 275:306–317

    Article  CAS  PubMed  Google Scholar 

  • Sen N, Arvin AM (2016) Dissecting the molecular mechanisms of the tropism of varicella-zoster virus for human T cells. J Virol 90:3284–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibata S, Asano T, Ogura A, Hashimoto N, Hayakawa J, Uetsuka K, Nakayama H, Doi K (1997) SCID-bg mice as xenograft recipients. Lab Anim 31:163–168

    Google Scholar 

  • Shiraki K, Yoshida Y, Asano Y, Yamanishi K, Takahashi M (2003) Pathogenetic tropism of varicella-zoster virus to primary human hepatocytes and attenuating tropism of Oka varicella vaccine strain to neonatal dermal fibroblasts. J Infect Dis 188:1875–1877

    Article  PubMed  Google Scholar 

  • Shultz LD, Ishikawa F, Greiner DL (2007) Humanized mice in translational biomedical research. Nat Rev Immunol 7:118–130

    Article  CAS  PubMed  Google Scholar 

  • Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL (2012) Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol 12:786–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steain M, Slobedman B, Abendroth A (2010) Experimental models to study varicella-zoster virus infection of neurons. Curr Top Microbiol Immunol 342:211–228

    CAS  PubMed  Google Scholar 

  • Stoddart CA, Bales CA, Bare JC, Chkhenkeli G, Galkina SA, Kinkade AN, Moreno ME, Rivera JM, Ronquillo RE, Sloan B, Black PL (2007) Validation of the SCID-hu Thy/Liv mouse model with four classes of licensed antiretrovirals. PLoS One 2:e655

    Google Scholar 

  • Taylor SL, Moffat JF (2005) Replication of varicella-zoster virus in human skin organ culture. J Virol 79:11501–11506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vleck SE, Oliver SL, Reichelt M, Rajamani J, Zerboni L, Jones C, Zehnder J, Grose C, Arvin AM (2010) Anti-glycoprotein H antibody impairs the pathogenicity of varicella-zoster virus in skin xenografts in the SCID mouse model. J Virol 84:141–152

    Article  CAS  PubMed  Google Scholar 

  • Vonsover A, Leventon-Kriss S, Langer A, Smetana Z, Zaizov R, Potaznick D, Cohen IJ, Gotlieb-Stematsky T (1987) Detection of varicella-zoster virus in lymphocytes by DNA hybridization. J Med Virol 21:57–66

    Article  CAS  PubMed  Google Scholar 

  • Vukmanovic-Stejic M, Sandhu D, Sobande TO, Agius E, Lacy KE, Riddell N, Montez S, Dintwe OB, Scriba TJ, Breuer J, Nikolich-Zugich J, Ogg G, Rustin MH, Akbar AN (2013) Varicella zoster-specific CD4+Foxp3+ T cells accumulate after cutaneous antigen challenge in humans. J Immunol 190:977–986

    Article  CAS  PubMed  Google Scholar 

  • Vukmanovic-Stejic M, Sandhu D, Seidel JA, Patel N, Sobande TO, Agius E, Jackson SE, Fuentes-Duculan J, Suarez-Farinas M, Mabbott NA, Lacy KE, Ogg G, Nestle FO, Krueger JG, Rustin MHA, Akbar AN (2015) The characterization of varicella zoster virus-specific T cells in skin and blood during Aging. J Invest Dermatol 135:1752–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vukmanovic-Stejic M, Chambers ES, Suarez-Farinas M, Sandhu D, Fuentes-Duculan J, Patel N, Agius E, Lacy KE, Turner CT, Larbi A, Birault V, Noursadeghi M, Mabbott NA, Rustin MHA, Krueger JG, Akbar AN (2018) Enhancement of cutaneous immunity during aging by blocking p38 mitogen-activated protein (MAP) kinase-induced inflammation. J Allergy Clin Immunol 142:844–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Pan D, Fu W, Cai L, Ye J, Liu J, Liu C, Huang X, Lin Y, **a N, Cheng T, Zhu H (2017) A SCID mouse-human lung xenograft model of varicella-zoster virus infection. Antiviral Res 146:45–53

    Article  CAS  PubMed  Google Scholar 

  • Weller TH (1953) Serial propagation in vitro of agents producing inclusion bodies derived from varicella and herpes zoster. Proc Soc Exp Biol Med 83:340–346

    Article  CAS  PubMed  Google Scholar 

  • Zerboni L, Hinchliffe S, Sommer MH, Ito H, Besser J, Stamatis S, Cheng J, Distefano D, Kraiouchkine N, Shaw A, Arvin AM (2005a) Analysis of varicella zoster virus attenuation by evaluation of chimeric parent Oka/vaccine Oka recombinant viruses in skin xenografts in the SCIDhu mouse model. Virology 332:337–346

    Article  CAS  PubMed  Google Scholar 

  • Zerboni L, Ku CC, Jones CD, Zehnder JL, Arvin AM (2005b) Varicella-zoster virus infection of human dorsal root ganglia in vivo. Proc Natl Acad Sci U S A 102:6490–6495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zerboni L, Reichelt M, Jones CD, Zehnder JL, Ito H, Arvin AM (2007) Aberrant infection and persistence of varicella-zoster virus in human dorsal root ganglia in vivo in the absence of glycoprotein I. Proc Natl Acad Sci USA 104:14086–14091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zerboni L, Reichelt M, Arvin A (2010) Varicella-zoster virus neurotropism in SCID mouse-human dorsal root ganglia xenografts. Curr Top Microbiol Immunol 342:255–276

    CAS  PubMed  Google Scholar 

  • Zerboni L, Berarducci B, Rajamani J, Jones CD, Zehnder JL, Arvin A (2011) Varicella-zoster virus glycoprotein E is a critical determinant of virulence in the SCID mouse-human model of neuropathogenesis. J Virol 85:98–111

    Article  CAS  PubMed  Google Scholar 

  • Zerboni L, Sen N, Oliver SL, Arvin AM (2014) Molecular mechanisms of varicella zoster virus pathogenesis. Nat Rev Microbiol 12:197–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zerboni L, Arvin A (2015) Neuronal subtype and satellite cell tropism are determinants of varicella-zoster virus virulence in human dorsal root ganglia xenografts in vivo. PLoS Pathog 11:e1004989

    Google Scholar 

  • Zerboni L, Sung P, Lee G, Arvin A (2018) Age-associated differences in infection of human skin in the SCID mouse model of varicella-zoster virus pathogenesis. J Virol 92

    Google Scholar 

  • Zhang Z, Rowe J, Wang W, Sommer M, Arvin A, Moffat J, Zhu H (2007) Genetic analysis of varicella-zoster virus ORF0 to ORF4 by use of a novel luciferase bacterial artificial chromosome system. J Virol 81:9024–9033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Institute of Allergy and Infectious Diseases, Division of Microbiology & Immunology contract HHSN272201700030I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer F. Moffat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lloyd, M.G., Moffat, J.F. (2022). Humanized Severe Combined Immunodeficient (SCID) Mouse Models for Varicella-Zoster Virus Pathogenesis. In: Arvin, A.M., Moffat, J.F., Abendroth, A., Oliver, S.L. (eds) Varicella-zoster Virus. Current Topics in Microbiology and Immunology, vol 438. Springer, Cham. https://doi.org/10.1007/82_2022_255

Download citation

Publish with us

Policies and ethics

Navigation