Synapsis, Double-Strand Breaks, and Domains of Crossover Control in Drosophila Females

  • Chapter
  • First Online:
Recombination and Meiosis

Part of the book series: Genome Dynamics and Stability ((GENOME,volume 2))

Abstract

Drosophila is an attractive model system in which powerful tools in genetics and cytology can be used to identify and characterize the genes required for meiotic recombination. This article reviews recent developments in understanding how pairing and synapsis proceed in the absence of double-strand breaks (DSBs), the relationship of DSB formation to synapsis, how crossovers are determined and formed, and the role that chromosome structure, including specialized sites, plays in regulating DSB formation and repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdu U, Gonzalez-Reyes A, Ghabrial A, Schupbach T (2003) The Drosophila spn-D gene encodes a RAD51C-like protein that is required exclusively during meiosis. Genetics 165:197–204

    PubMed  CAS  Google Scholar 

  2. Anderson LK et al. (2005) Juxtaposition of C(2)M and the transverse filament protein C(3)G within the central region of Drosophila synaptonemal complex. Proc Natl Acad Sci USA 102:4482–4487

    Article  PubMed  CAS  Google Scholar 

  3. Baker BS et al. (1976a) Genetic controls of meiotic recombination and somatic DNA metabolism in Drosophila melanogaster. Proc Natl Acad Sci USA 73:4140–4144

    Article  PubMed  CAS  Google Scholar 

  4. Baker BS, Carpenter ATC, Esposito MS, Esposito RE, Sandler L (1976b) The genetic control of meiosis. Annu Rev Genet 10:53–134

    Article  PubMed  CAS  Google Scholar 

  5. Balicky EM, Endres MW, Lai C, Bickel SE (2002) Meiotic cohesion requires accumulation of ORD on chromosomes before condensation. Mol Biol Cell 13:3890–3900

    Article  PubMed  CAS  Google Scholar 

  6. Beadle G (1932) A possible influence of the spindle fiber on crossing over in Drosophila melanogaster. Proc Natl Acad Sci USA 18:160–165

    Article  PubMed  CAS  Google Scholar 

  7. Bhagat R, Manheim EA, Sherizen DE, McKim KS (2004) Studies on crossover specific mutants and the distribution of crossing over in Drosophila females. Cytogenet Genome Res 107:160–171

    Article  PubMed  CAS  Google Scholar 

  8. Bhalla N, Dernburg AF (2005) A conserved checkpoint monitors meiotic chromosome synapsis in Caenorhabditis elegans. Science 310:1683–1686

    Article  PubMed  CAS  Google Scholar 

  9. Bickel SE, Orr-Weaver TL, Balicky EM (2002) The sister-chromatid cohesion protein ORD is required for chiasma maintenance in Drosophila oocytes. Curr Biol 12:925–929

    Article  PubMed  CAS  Google Scholar 

  10. Bickel SE, Wyman DW, Miyazaki WY, Moore DP, Orr-Weaver TL (1996) Identification of ORD, a Drosophila protein essential for sister- chromatid cohesion. EMBO J 15:1451–1459

    PubMed  CAS  Google Scholar 

  11. Bickel SE, Wyman DW, Orr-Weaver TL (1997) Mutational analysis of the Drosophila sister-chromatid cohesion protein ORD and its role in the maintenance of centromeric cohesion. Genetics 146:1319–1331

    PubMed  CAS  Google Scholar 

  12. Bishop DK, Zickler D (2004) Early decision; meiotic crossover interference prior to stable strand exchange and synapsis. Cell 117:9–15

    Article  PubMed  CAS  Google Scholar 

  13. Blanton HL, Radford SJ, McMahan S, Kearney HM, Ibrahim JG, Sekelsky J (2005) REC, Drosophila MCM8, drives formation of meiotic crossovers. PLoS Genet 1:e40

    Article  PubMed  CAS  Google Scholar 

  14. Bopp D, Schutt C, Puro J, Huang H, Nothiger R (1999) Recombination and disjunction in female germ cells of Drosophila depend on the germline activity of the gene sex-lethal. Development 126:5785–5794

    PubMed  CAS  Google Scholar 

  15. Borner GV, Kleckner N, Hunter N (2004) Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117:29–45

    Article  PubMed  Google Scholar 

  16. Bridges CB (1916) Non-disjunction as proof of the chromosome theory of heredity. Genetics 1:1–52

    PubMed  CAS  Google Scholar 

  17. Carpenter ATC (1975) Electron microscopy of meiosis in Drosophila melanogaster females. I. Structure, arrangement, and temporal change of the synaptonemal complex in wild-type. Chromosoma 51:157–182

    Article  PubMed  CAS  Google Scholar 

  18. Carpenter ATC (1979a) Recombination nodules and synaptonemal complex in recombination-defective females of Drosophila melanogaster. Chromosoma 75:259–292

    Article  PubMed  CAS  Google Scholar 

  19. Carpenter ATC (1979b) Synaptonemal complex and recombination nodules in wild-type Drosophila melanogaster females. Genetics 92:511–541

    PubMed  CAS  Google Scholar 

  20. Carpenter ATC (1981) EM autoradiographic evidence that DNA synthesis occurs at recombination nodules during meiosis in Drosophila melanogaster females. Chromosoma 83:59–80

    Article  PubMed  CAS  Google Scholar 

  21. Carpenter ATC (1982) Mismatch repair, gene conversion, and crossing over in two recombination-defective mutants of Drosophila melanogaster. Proc Natl Acad Sci USA 79:5961–5965

    Article  PubMed  CAS  Google Scholar 

  22. Carpenter ATC (1984) Meiotic roles of crossing over and of gene conversion. Cold Spring Harbor Symp. Quant Biol 49:23–29

    CAS  Google Scholar 

  23. Carpenter ATC (1989) Are there morphologically abnormal early recombination nodules in the Drosophila melanogaster meiotic mutant mei-218? Genome 31:74–80

    PubMed  CAS  Google Scholar 

  24. Carpenter ATC (2003) Normal synaptonemal complex and abnormal recombination nodules in two alleles of the Drosophila meiotic mutant mei-W68. Genetics 163:1337–1356

    PubMed  CAS  Google Scholar 

  25. Carpenter ATC, Sandler L (1974) On recombination-defective meiotic mutants in Drosophila melanogaster. Genetics 76:453–475

    PubMed  CAS  Google Scholar 

  26. Ciapponi L et al. (2004) The Drosophila Mre11/Rad50 complex is required to prevent both telomeric fusion and chromosome breakage. Curr Biol 14:1360–1366

    Article  PubMed  CAS  Google Scholar 

  27. Colaiacovo MP et al. (2003) Synaptonemal complex assembly in C. elegans is dispensable for loading strand-exchange proteins but critical for proper completion of recombination. Dev Cell 5:463–474

    Article  PubMed  CAS  Google Scholar 

  28. Cooper KW (1948) A new theory of secondary non-disjunction in female Drosophila melanogaster. Proc Natl Acad Sci USA 34:179–187

    Article  PubMed  CAS  Google Scholar 

  29. Cromie GA, Smith GR (2007) Title of chapter (in this volume). Springer, Heidelberg

    Google Scholar 

  30. Csink AK, Henikoff S (1998) Large-scale chromosomal movements during interphase progression in Drosophila. J Cell Biol 143:13–22

    Article  PubMed  CAS  Google Scholar 

  31. Dernburg AF, McDonald K, Moulder G, Barstead R, Dresser M, Villeneuve AM (1998) Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94:387–398

    Article  PubMed  CAS  Google Scholar 

  32. Di Giacomo M, Barchi M, Baudat F, Edelmann W, Keeney S, Jasin M (2005) Distinct DNA-damage-dependent and -independent responses drive the loss of oocytes in recombination-defective mouse mutants. Proc Natl Acad Sci USA 102:737–742

    Article  PubMed  CAS  Google Scholar 

  33. Eissenberg JC, Elgin SC (2000) The HP1 protein family: getting a grip on chromatin. Curr Opin Genet Dev 10:204–210

    Article  PubMed  CAS  Google Scholar 

  34. Fung JC, Marshall WF, Dernburg A, Agard DA, Sedat JW (1998) Homologous chromosome pairing in Drosophila melanogaster proceeds through multiple independent initiations. J Cell Biol 141:5–20

    Article  PubMed  CAS  Google Scholar 

  35. Ghabrial A, Schupbach T (1999) Activation of a meiotic checkpoint regulates translation of Gurken during Drosophila oogenesis. Nat Cell Biol 1:354–357

    Article  PubMed  CAS  Google Scholar 

  36. Ghabrial A, Ray RP, Schupbach T (1998) okra and spindle-B encode components of the RAD52 DNA repair pathway and affect meiosis and patterning in Drosophila oogenesis. Genes Dev 12:2711–2723

    Article  PubMed  CAS  Google Scholar 

  37. Gong WJ, McKim KS, Hawley RS (2005) All paired up with no place to go: pairing, synapsis, and DSB formation in a balancer heterozygote. PLoS Genet 1:e67

    Article  PubMed  CAS  Google Scholar 

  38. Gorski MM et al. (2004) Disruption of Drosophila Rad50 causes pupal lethality, the accumulation of DNA double-strand breaks and the induction of apoptosis in third instar larvae. DNA Repair (Amst) 3:603–615

    CAS  Google Scholar 

  39. Grell RF, Day JW (1970) Chromosome pairing in the oogonial cells of Drosophila melanogaster. Chromosoma 31:424–445

    Article  Google Scholar 

  40. Hall JC (1972) Chromosome segregation influenced by two alleles of the meiotic mutant c(3)G in Drosphila melanogaster. Genetics 71:367–400

    PubMed  CAS  Google Scholar 

  41. Hari KL, Santerre A, Sekelsky JJ, McKim KS, Boyd JB, Hawley RS (1995) The mei-41 gene of D. melanogaster is a structural and function homolog of the human ataxia telangiectasia gene. Cell 82:815–821

    Article  PubMed  CAS  Google Scholar 

  42. Hawley RS (1980) Chromosomal sites necessary for normal levels of meiotic recombination in Drosophila melanogaster. I. Evidence for and map** of the sites. Genetics 94:625–646

    PubMed  CAS  Google Scholar 

  43. Heidmann D, Horn S, Heidmann S, Schleiffer A, Nasmyth K, Lehner CF (2004) The Drosophila meiotic kleisin C(2)M functions before the meiotic divisions. Chromosoma 113:177–187

    Article  PubMed  CAS  Google Scholar 

  44. Henderson KA, Keeney S (2004) Tying synaptonemal complex initiation to the formation and programmed repair of DNA double-strand breaks. Proc Natl Acad Sci USA 101:4519–4524

    Article  PubMed  CAS  Google Scholar 

  45. Hillers KJ, Villeneuve AM (2003) Chromosome-wide control of meiotic crossing over in C. elegans. Curr Biol 13:1641–1647

    Article  PubMed  CAS  Google Scholar 

  46. Hilliker AJ, Clark SH, Chovnick A (1988) Genetic analysis of intragenic recombination in Drosophila. In: Low KB (ed) The recombination of genetic material. Academic, New York, pp 73–90

    Google Scholar 

  47. Hiraoka Y, Dernburg AF, Parmelee SJ, Rykowski MC, Agard DA, Sedat JW (1993) The onset of homologous chromosome pairing during Drosophila melanogaster embryogenesis. J Cell Biol 120:591–600

    Article  PubMed  CAS  Google Scholar 

  48. Hoffmann ER, Borts RH (2004) Meiotic recombination intermediates and mismatch repair proteins. Cytogenet Genome Res 107:232–248

    Article  PubMed  CAS  Google Scholar 

  49. Hollingsworth NM, Brill SJ (2004) The Mus81 solution to resolution: generating meiotic crossovers without Holliday junctions. Genes Dev 18:117–125

    Article  PubMed  CAS  Google Scholar 

  50. Jang JK, Sherizen DE, Bhagat R, Manheim EA, McKim KS (2003) Relationship of DNA double-strand breaks to synapsis in Drosophila. J Cell Sci 116:3069–3077

    Article  PubMed  CAS  Google Scholar 

  51. Kaback DB, Guacci V, Barber D, Mahon JW (1992) Chromosome size-dependent control of meiotic recombination. Science 256:228–232

    Article  PubMed  CAS  Google Scholar 

  52. Kaback DB, Barber D, Mahon J, Lamb J, You J (1999) Chromosome size-dependent control of meiotic reciprocal recombination in Saccharomyces cerevisiae: the role of crossover interference. Genetics 152:1475–1486

    PubMed  CAS  Google Scholar 

  53. Kauppi L, Jeffreys AJ, Keeney S (2004) Where the crossovers are: recombination distributions in mammals. Nat Rev Genet 5:413–424

    Article  PubMed  CAS  Google Scholar 

  54. Keeney S (2001) Mechanism and control of meiotic recombination initiation. Curr Top Dev Biol 52:1–53

    Article  PubMed  CAS  Google Scholar 

  55. Keeney S (2007) in this volume. Springer, Heidelberg

    Google Scholar 

  56. Kleckner N et al. (2004) A mechanical basis for chromosome function. Proc Natl Acad Sci USA 101:12592–12597

    Article  PubMed  CAS  Google Scholar 

  57. Kooistra R et al. (1997) The Drosophila melanogaster RAD54 homolog, DmRAD54, is involved in the repair of radiation damage and recombination. Mol Cell Biol 17:6097–6104

    PubMed  CAS  Google Scholar 

  58. Lantz V, Chang JS, Horabin JI, Bopp D, Schedl P (1994) The Drosophila ORB RNA-binding protein is required for the formation of the egg chamber and establishment of polarity. Genes Dev 8:598–613

    Article  PubMed  CAS  Google Scholar 

  59. Laurencon A et al. (2004) A large-scale screen for mutagen-sensitive loci in Drosophila. Genetics 167:217–231

    Article  PubMed  CAS  Google Scholar 

  60. Lichten M, Goldman A (1995) Meiotic recombination hotspots. Annu Rev Genet 29:423–444

    Article  PubMed  CAS  Google Scholar 

  61. Liu H, Jang JK, Graham J, Nycz K, McKim KS (2000) Two genes required for meiotic recombination in Drosophila are expressed from a dicistronic message. Genetics 154:1735–1746

    PubMed  CAS  Google Scholar 

  62. Liu H, Jang JK, Kato N, McKim KS (2002) mei-P22 encodes a chromosome-associated protein required for the initiation of meiotic recombination in Drosophila melanogaster. Genetics 162:245–258

    PubMed  CAS  Google Scholar 

  63. Liu Y, Masson JY, Shah R, O'Regan P, West SC (2004) RAD51C is required for Holliday junction processing in mammalian cells. Science 303:243–246

    Article  PubMed  CAS  Google Scholar 

  64. MacQueen AJ, Colaiacovo MP, McDonald K, Villeneuve AM (2002) Synapsis-dependent and -independent mechanisms stabilize homolog pairing during meiotic prophase in C. elegans. Genes Dev 16:2428–2442

    Article  PubMed  CAS  Google Scholar 

  65. Macqueen AJ, Phillips CM, Bhalla N, Weiser P, Villeneuve AM, Dernburg AF (2005) Chromosome sites play dual roles to establish homologous synapsis during meiosis in C. elegans. Cell 123:1037–1050

    Article  PubMed  CAS  Google Scholar 

  66. Madigan JP, Chotkowski HL, Glaser RL (2002) DNA double-strand break-induced phosphorylation of Drosophila histone variant H2Av helps prevent radiation-induced apoptosis. Nucleic Acids Res 30:3698–3705

    Article  PubMed  CAS  Google Scholar 

  67. Manheim EA, McKim KS (2003) The synaptonemal complex component C(2)M regulates meiotic crossing over in Drosophila. Curr Biol 13:276–285

    Article  PubMed  CAS  Google Scholar 

  68. Marshall WF, Dernburg AF, Harmon B, Agard DA, Sedat JW (1996) Specific interactions of chromatin with the nuclear envelope: positional determination within the nucleus in Drosophila melanogaster. Mol Biol Cell 7:825–842

    PubMed  CAS  Google Scholar 

  69. Martini E, Diaz RL, Hunter N, Keeney S (2006) Crossover homeostasis in yeast meiosis. Cell 126:285–295

    Article  PubMed  CAS  Google Scholar 

  70. May et al. (2007) Title of chapter (in this volume). Springer, Heidelberg

    Google Scholar 

  71. McKim KS, Hayashi-Hagihara A (1998) mei-W68 in Drosophila melanogaster encodes a Spo11 homolog: evidence that the mechanism for initiating meiotic recombination is conserved. Genes Dev 12:2932–2942

    Article  PubMed  CAS  Google Scholar 

  72. McKim KS, Peters K, Rose AM (1993) Two types of sites required for meiotic chromosome pairing in Caenorhabditis elegans. Genetics 134:749–768

    PubMed  CAS  Google Scholar 

  73. McKim KS, Dahmus JB, Hawley RS (1996) Cloning of the Drosophila melanogaster meiotic recombination gene mei-218: a genetic and molecular analysis of interval 15E. Genetics 144:215–228

    PubMed  CAS  Google Scholar 

  74. McKim KS et al. (1998) Meiotic synapsis in the absence of recombination. Science 279:876–878

    Article  PubMed  CAS  Google Scholar 

  75. McKim KS, Jang JK, Manheim EA (2002) Meiotic recombination and chromosome segregation in Drosophila females. Annu Rev Genet 36:205–232

    Article  PubMed  CAS  Google Scholar 

  76. Mehrotra S, McKim KS (2006) Temporal analysis of meiotic DNA double-strand break formation and repair in Drosophila females. PLoS Genet 2:e200

    Article  PubMed  CAS  Google Scholar 

  77. Osman F, Dixon J, Doe CL, Whitby MC (2003) Generating crossovers by resolution of nicked Holliday junctions: a role for Mus81-Eme1 in meiosis. Mol Cell 12:761–774

    Article  PubMed  CAS  Google Scholar 

  78. Page SL, Hawley RS (2001) c(3)G encodes a Drosophila synaptonemal complex protein. Genes Dev 15:3130–3143

    Article  PubMed  CAS  Google Scholar 

  79. Page SL, Hawley RS (2004) The genetics and molecular biology of the synaptonemal complex. Annu Rev Cell Dev Biol 20:525–558

    Article  PubMed  CAS  Google Scholar 

  80. Page SL, Hawley RS (2005) The Drosophila meiotic mutant mei-352 is an allele of klp3A and reveals a role for a kinesin-like protein in crossover distribution. Genetics 170:1797–1807

    Article  PubMed  CAS  Google Scholar 

  81. Page SL, McKim KS, Deneen B, Van Hook TL, Hawley RS (2000) Genetic studies of mei-P26 reveal a link between the processes that control germ cell proliferation in both sexes and those that control meiotic exchange in Drosophila. Genetics 155:1757–1772

    PubMed  CAS  Google Scholar 

  82. Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404

    PubMed  CAS  Google Scholar 

  83. Phillips CM, Dernburg AF (2006) A family of zinc-finger proteins is required for chromosome-specific pairing and synapsis during meiosis in C. elegans. Dev Cell 11:817–829

    Article  PubMed  CAS  Google Scholar 

  84. Phillips CM et al. (2005) HIM-8 binds to the X chromosome pairing center and mediates chromosome-specific meiotic synapsis. Cell 123:1051–1063

    Article  PubMed  CAS  Google Scholar 

  85. Radford SJ, Goley E, Baxter K, McMahan S, Sekelsky J (2005) Drosophila ERCC1 is required for a subset of MEI-9-dependent meiotic crossovers. Genetics 170:1737–1745

    Article  PubMed  CAS  Google Scholar 

  86. Radford SJ, McMahan S, Blanton HL, Sekelsky J (2007a) Heteroduplex DNA in meiotic recombination in Drosophila mei-9 mutants. Genetics

    Google Scholar 

  87. Radford SJ, Sabourin MM, McMahan S, Sekelsky J (2007b) Meiotic recombination in Drosophila Msh6 mutants yields discontinuous gene conversion tracts. Genetics

    Google Scholar 

  88. Ramesh MA, Malik SB, Logsdon JM Jr (2005) A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr Biol 15:185–191

    PubMed  CAS  Google Scholar 

  89. Roberts PA (1969) Some components of X-ray-induced crossing over in females of Drosophila melanogaster. Genetics 63:387–404

    PubMed  CAS  Google Scholar 

  90. Sandler L, Lindsley DL, Nicoletti B, Trippa G (1968) Mutants affecting meiosis in natural populations of Drosophila melanogaster. Genetics 60:525–558

    PubMed  CAS  Google Scholar 

  91. Schleiffer A, Kaitna S, Maurer-Stroh S, Glotzer M, Nasmyth K, Eisenhaber F (2003) Kleisins: a superfamily of bacterial and eukaryotic SMC protein partners. Mol Cell 11:571–575

    Article  PubMed  CAS  Google Scholar 

  92. Schwacha A, Kleckner N (1997) Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog-only pathway. Cell 90:1123–1135

    Article  PubMed  CAS  Google Scholar 

  93. Sekelsky JJ, McKim KS, Chin GM, Hawley RS (1995) The Drosophila meiotic recombination gene mei-9 encodes a homologue of the yeast excision repair protein Rad1. Genetics 141:619–627

    PubMed  CAS  Google Scholar 

  94. Sherizen D, Jang JK, Bhagat R, Kato N, McKim KS (2005) Meiotic recombination in Drosophila females depends on chromosome continuity between genetically defined boundaries. Genetics 169:767–781

    Article  PubMed  CAS  Google Scholar 

  95. Smith PD, Finnerty VG, Chovnick A (1970) Gene conversion in Drosophila: non-reciprocal events at the maroon-like cistron. Nature 228:442–444

    Article  PubMed  CAS  Google Scholar 

  96. Staeva-Vieira E, Yoo S, Lehmann R (2003) An essential role of DmRad51/SpnA in DNA repair and meiotic checkpoint control. EMBO J 22:5863–5874

    Article  PubMed  CAS  Google Scholar 

  97. Sturtevant AH (1913) The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. J Exp Biol 14:43–59

    Google Scholar 

  98. Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33:25–35

    Article  PubMed  CAS  Google Scholar 

  99. Webber HA, Howard L, Bickel SE (2004) The cohesion protein ORD is required for homologue bias during meiotic recombination. J Cell Biol 164:819–829

    Article  PubMed  CAS  Google Scholar 

  100. Weiner B, Kleckner N (1994) Chromosome pairing via multiple interstitial interactions before and during meiosis yeast. Cell 77:977–991

    Article  PubMed  CAS  Google Scholar 

  101. Wu HY, Burgess SM (2006) Two distinct surveillance mechanisms monitor meiotic chromosome metabolism in budding yeast. Curr Biol 16:2473–2479

    Article  PubMed  CAS  Google Scholar 

  102. Yildiz O, Majumder S, Kramer B, Sekelsky JJ (2002) Drosophila MUS312 interacts with the nucleotide excision repair endonuclease MEI-9 to generate meiotic crossovers. Mol Cell 10:1503–1509

    Article  PubMed  CAS  Google Scholar 

  103. Zickler D, Kleckner N (1999) Meiotic chromosomes: integrating structure and function. Annu Rev Genet 33:603–754

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim S. McKim .

Editor information

Richard Egel Dirk-Henner Lankenau

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mehrotra, S., Hawley, R.S., McKim, K.S. (2007). Synapsis, Double-Strand Breaks, and Domains of Crossover Control in Drosophila Females. In: Egel, R., Lankenau, DH. (eds) Recombination and Meiosis. Genome Dynamics and Stability, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7050_2007_028

Download citation

Publish with us

Policies and ethics

Navigation