New Sensing Model of (Mesoporous) In2O3

  • Chapter
  • First Online:
Gas Sensing Fundamentals

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 15))

  • 1938 Accesses

Abstract

Recently indium oxide (In2O3) attracted attention as a material for sensing layers in semiconducting gas sensors. Compared to frequently investigated materials like tin dioxide (SnO2), tungsten trioxide (WO3), or gallium oxide (Ga2O3) indium oxide offers some unique properties. The most prominent one is its selectivity to oxidizing gases such as ozone (O3) or nitrogen dioxide (NO2) at low operating temperatures (<150°C). Combined with the photoreduction properties of nanocast, porous In2O3 highly selective sensing layers with a fast response can be prepared. In some cases even room temperature measurements are possible; therefore this material allows for designing low-power sensors without the need for special sensor substrates (e.g., μ-hotplates). Detailed analysis of the sensing mechanism reveals that known sensing models are not able to describe the observed effects. Therefore a new sensing model for ordered nanoporous In2O3 is presented which will be applicable for nonstructured material too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 287.83
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 374.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 374.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Morrison SR (1987) Selectivity in semiconductor gas sensors. Sens Actuator 12(4):425–440. doi:10.1016/0250-6874(87)80061-6

    Article  CAS  Google Scholar 

  2. Kunt TA, McAvoy TJ, Cavicchi RE et al (1998) Optimization of temperature programmed sensing for gas identification using micro-hotplate sensors. Sens Actuators B Chem 53(1–2):24–43. doi:10.1016/S0925-4005(98)00244-5

    Article  CAS  Google Scholar 

  3. Sauerwald T (2007) Untersuchung von Oberflächenprozessen mit Einfluss auf die Multisignalgewinnung von SnO2- und WO3-Gassensoren. Dissertation, Justus-Liebig-Universität

    Google Scholar 

  4. Cabot A, Arbiol J, Cornet A et al (2003) Mesoporous catalytic filters for semiconductor gas sensors. In: Papers from the 3rd international seminar on semiconductor gas sensors, vol 436. pp 64–69. doi:10.1016/S0040-6090(03)00510-8

  5. Wagner T, Haffer S, Weinberger C et al (2013) Mesoporous materials as gas sensors. Chem Soc Rev 42(9):4036–4053. doi:10.1039/C2CS35379B

    Article  CAS  Google Scholar 

  6. Vincenzi D, Butturi MA, Guidi V et al (2001) Development of a low-power thick-film gas sensor deposited by screen-printing technique onto a micromachined hotplate. Proceeding of the eighth international meeting on chemical sensors IMCS-8 – Part 2. Sens Actuators B Chem 77(1–2):95–99. doi:10.1016/S0925-4005(01)00679-7

  7. Faglia G, Comini E, Cristalli A et al (1999) Very low power consumption micromachined CO sensors. Sens Actuators B Chem 55(2–3):140–146. doi:10.1016/S0925-4005(99)00044-1

    Article  CAS  Google Scholar 

  8. Takada T, Tanjou H, Saito T et al (1995) Aqueous ozone detector using In2O3 thin-film semiconductor gas sensor. Proceedings of the fifth international meeting on chemical sensors. Sens Actuators B Chem 25:548–551. doi:10.1016/0925-4005(95)85119-4

  9. Takada T, Suzuki K, Nakane M (1993) Highly sensitive ozone sensor. Sens Actuators B Chem 13(1–3):404–407. doi:10.1016/0925-4005(93)85412-4

    Article  CAS  Google Scholar 

  10. Ivanovskaya M, Gurlo A, Bogdanov P (2001) Mechanism of O3 and NO2 detection and selectivity of In2O3 sensors. Proceeding of the eighth international meeting on chemical sensors IMCS-8 – part 2. Sens Actuators B Chem 77(1–2):264–267. doi:10.1016/S0925-4005(01)00708-0

    Article  CAS  Google Scholar 

  11. Wang CY, Cimalla V, Kups T et al (2007) Integration of In2O3 nanoparticle based ozone sensors with GaInN/GaN light emitting diodes. Appl Phys Lett 91(10):103509

    Article  Google Scholar 

  12. Wirtz GP, Takiar HP (1981) Oxygen diffusion in vapor-deposited indium oxide films. J Am Ceram Soc 64(12):748–752. doi:10.1111/j.1151-2916.1981.tb15900.x

    Article  CAS  Google Scholar 

  13. Bender M, Katsarakis N, Gagaoudakis E et al (2001) Dependence of the photoreduction and oxidation behavior of indium oxide films on substrate temperature and film thickness. J Appl Phys 90(10):5382–5387

    Article  CAS  Google Scholar 

  14. Vollath D (2008) Nanomaterials: an introduction to synthesis, properties and application. Wiley-VCH, Weinheim, ISBN-10: 3527333797

    Google Scholar 

  15. Hoekstra HR, Gingerich KA (1964) High-pressure B-type polymorphs of some rare-earth sesquioxides. Science 146(3648):1163–1164

    Article  CAS  Google Scholar 

  16. Prewitt CT, Shannon RD, Rogers DB et al (1969) The C rare earth oxide-corundum transition and crystal chemistry of oxides having the corundum structure. Inorg Chem 8(9):1985–1993. doi:10.1021/ic50079a033

    Article  CAS  Google Scholar 

  17. Gurlo A, Kroll P, Riedel R (2008) Metastability of corundum-type In2O3. Chem Eur J 14(11):3306–3310. doi:10.1002/chem.200701830

    Article  CAS  Google Scholar 

  18. Chu D, Zeng Y, Jiang D et al (2007) Tuning the phase and morphology of In2O3 nanocrystals via simple solution routes. Nanotechnology 18(43):435605

    Article  Google Scholar 

  19. Marezio M (1966) Refinement of the crystal structure of In2O3 at two wavelengths. Acta Cryst 20(6):723–728. doi:10.1107/S0365110X66001749

    Article  CAS  Google Scholar 

  20. Harvey SP, Mason TO, Gassenbauer Y et al (2006) Surface versus bulk electronic/defect structures of transparent conducting oxides: I. Indium oxide and ITO. J Phys D Appl Phys 39(18):3959–3968

    Article  CAS  Google Scholar 

  21. Ivanovskaya M, Bogdanov P, Faglia G et al (2000) The features of thin film and ceramic sensors at the detection of CO and NO2. Sens Actuators B Chem 68(1–3):344–350

    Article  CAS  Google Scholar 

  22. Korotcenkov G, Brinzari V, Cerneavschi A et al (2002) Crystallographic characterization of In2O3 films deposited by spray pyrolysis. Sens Actuators B Chem 84(1):37–42

    Article  CAS  Google Scholar 

  23. Korotcenkov G, Brinzari V, Cerneavschi A et al (2004) The influence of film structure on In2O3 gas response. Thin Solid Films 460(1–2):315–323

    Article  CAS  Google Scholar 

  24. Golovanov V, Mäki-Jaskari MA, Rantala TT et al (2005) Experimental and theoretical studies of indium oxide gas sensors fabricated by spray pyrolysis. Sens Actuators B Chem 106(2):563–571

    Article  CAS  Google Scholar 

  25. de Wit JHW (1973) Electrical properties of In2O3. J Solid State Chem 8(2):142–149

    Article  Google Scholar 

  26. Weiher RL (1962) Electrical properties of single crystals of indium oxide. J Appl Phys 33(9):2834–2839

    Article  CAS  Google Scholar 

  27. de Wit JHW (1975) The high temperature behavior of In2O3. J Solid State Chem 13(3):192–200

    Article  Google Scholar 

  28. Agoston P, Erhart P, Klein A et al (2009) Geometry, electronic structure and thermodynamic stability of intrinsic point defects in indium oxide. J Phys Condens Matter 21(45):455801

    Article  Google Scholar 

  29. Lany S, Zunger A (2007) Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides. Phys Rev Lett 98(4):45501

    Article  Google Scholar 

  30. Tomita T, Yamashita K, Hayafuji Y et al (2005) The origin of n-type conductivity in undoped In2O3. Appl Phys Lett 87(5):51911–51913

    Article  Google Scholar 

  31. Cox SFJ, Davis EA, Cottrell SP et al (2001) Experimental confirmation of the predicted shallow donor hydrogen state in zinc oxide. Phys Rev Lett 86(12):2601. doi:10.1103/PhysRevLett.86.2601

    Article  CAS  Google Scholar 

  32. Cox SFJ (2003) The shallow-to-deep instability of hydrogen and muonium in II–VI and III–V semiconductors. J Phys Condens Matter 15(46):R1727

    Article  CAS  Google Scholar 

  33. Erhart P, Klein A, Egdell RG et al (2007) Band structure of indium oxide: indirect versus direct band gap. Phys Rev B 75(15):153205–4

    Article  Google Scholar 

  34. Walsh A, Da Silva JLF, Wei S et al (2008) Nature of the band gap of In2O3 revealed by first-principles calculations and X-ray spectroscopy. Phys Rev Lett 100(16):167402–167404

    Article  Google Scholar 

  35. Weiher RL, Ley RP (1966) Optical properties of indium oxide. J Appl Phys 37(1):299–302

    Article  CAS  Google Scholar 

  36. **rouchaki C, Kiriakidis G, Pedersen TF et al (1996) Photoreduction and oxidation of as-deposited microcrystalline indium oxide. J Appl Phys 79(12):9349–9352. doi:10.1063/1.362612

    Article  CAS  Google Scholar 

  37. Matino F, Persano L, Arima V et al (2005) Electronic structure of indium-tin-oxide films fabricated by reactive electron-beam deposition. Phys Rev B 72(8):85437

    Article  Google Scholar 

  38. Gassenbauer Y, Klein A (2006) Electronic and chemical properties of tin-doped indium oxide (ITO) surfaces and ITO/ZnPc interfaces studied in-situ by photoelectron spectroscopy. J Phys Chem B 110(10):4793–4801

    CAS  Google Scholar 

  39. King PDC, Veal TD, Fuchs F et al (2009) Band gap, electronic structure, and surface electron accumulation of cubic and rhombohedral In2O3. Phys Rev B 79(20):205211–10

    Google Scholar 

  40. Williams R (1965) Photoemission of electrons from silicon into silicon dioxide. Phys Rev 140(2A):A569

    Article  Google Scholar 

  41. Abstreiter G, Prechtel U, Weimann G et al (1986) Internal photoemission – a suitable method for determining band offsets in semiconductor heterostructures. Surf Sci 174(1–3):313–317

    Article  Google Scholar 

  42. Pan CA, Ma TP (1980) Work function of In2O3 film as determined from internal photoemission. Appl Phys Lett 37(8):714–716

    Article  CAS  Google Scholar 

  43. Sarath Kumar SR, Kasiviswanathan S (2009) Role of oxygen vacancies in the high-temperature thermopower of indium oxide and indium tin oxide films. Semicond Sci Tech 24(025028):1–7

    Google Scholar 

  44. Abdullaev MA, Kamillov IK, Magomedova DK et al (2004) Effects of the preparation procedure and In2O3 thickness on the electrical and photovoltaic properties of In2O3 CuInSe2 heterostructures. Inorg Mater 40(11):1181–1185. doi:10.1023/B:INMA.0000048218.96266.25

    Article  CAS  Google Scholar 

  45. Li X, Zhang Q, Miao W et al (2006) Transparent conductive oxide thin films of tungsten-doped indium oxide. Thin Solid Films 515(4):2471–2474

    Article  CAS  Google Scholar 

  46. Bellingham JR, Phillips WA, Adkins CJ (1990) Electrical and optical properties of amorphous indium oxide. J Phys Condens Matter 28:6207

    Article  Google Scholar 

  47. Cho J, Yoon KH, Koh S (2000) Microstructure of indium oxide films in oxygen ion-assisted deposition. Thin Solid Films 368(1):111–115

    Article  CAS  Google Scholar 

  48. Oprea A, Gurlo A, Barsan N et al (2009) Transport and gas sensing properties of In2O3 nanocrystalline thick films: a Hall effect based approach. Sens Actuators B Chem 139(2):322–328

    Article  CAS  Google Scholar 

  49. Tiemann M (2008) Repeated templating. Chem Mater 20(3):961–971

    Article  CAS  Google Scholar 

  50. Lu A, Schüth F (2006) Nanocasting: a versatile strategy for creating nanostructured porous materials. Adv Mater 18(14):1793–1805. doi:10.1002/adma.200600148

    Article  CAS  Google Scholar 

  51. Yang H, Zhao D (2005) Synthesis of replica mesostructures by the nanocasting strategy. J Mater Chem 15(12):1217–1231. doi:10.1039/B414402C

    CAS  Google Scholar 

  52. Roggenbuck J, Waitz T, Tiemann M (2008) Synthesis of mesoporous metal oxides by structure replication: strategies of impregnating porous matrices with metal salts. Micropor Mesopor Mat 113(1–3):575–582

    Article  CAS  Google Scholar 

  53. Schüth F (2003) Endo- and exotemplating to create high-surface-area inorganic materials. Angew Chem Int Edit 42(31):3604–3622. doi:10.1002/anie.200300593

    Article  Google Scholar 

  54. Valdés-Solís T, Fuertes AB (2006) High-surface area inorganic compounds prepared by nanocasting techniques. Mater Res Bull 41(12):2187–2197. doi:10.1016/j.materresbull.2006.04.018

    Article  Google Scholar 

  55. Wan Y, Yang H, Zhao D (2006) “Host − Guest” chemistry in the synthesis of ordered nonsiliceous mesoporous materials. Acc Chem Res 39(7):423–432. doi:10.1021/ar050091a

    Article  CAS  Google Scholar 

  56. Kondo JN, Domen K (2007) Crystallization of mesoporous metal oxides†. Chem Mater 20(3):835–847. doi:10.1021/cm702176m

    Article  Google Scholar 

  57. Lu A, Zhao D, Wan Y (2010) Nanocasting. A versatile strategy for creating nanostructured porous materials. RSC Nanoscience & Nanotechnology, Royal Society of Chemistry, Cambridge

    Google Scholar 

  58. Ren Y, Ma Z, Bruce PG (2012) Ordered mesoporous metal oxides: synthesis and applications. Chem Soc Rev 41(14):4909–4927. doi:10.1039/C2CS35086F

    Article  CAS  Google Scholar 

  59. Liang C, Li Z, Dai S (2008) Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed 47(20):3696–3717. doi:10.1002/anie.200702046

    Article  CAS  Google Scholar 

  60. **a Y, Yang Z, Mokaya R (2010) Templated nanoscale porous carbons. Nanoscale 2(5):639–659. doi:10.1039/B9NR00207C

    Article  CAS  Google Scholar 

  61. Thomas A, Goettmann F, Antonietti M (2008) Hard templates for soft materials: creating nanostructured organic materials†. Chem Mater 20(3):738–755. doi:10.1021/cm702126j

    Article  CAS  Google Scholar 

  62. Tüysüz H, Schüth F (2012) Ordered mesoporous materials as catalysts. Adv Catal 55:127–239

    Article  Google Scholar 

  63. Soler-Illia GJ, Sanchez C, Lebeau B et al (2002) Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem Rev 102(11):4093–4138

    Article  Google Scholar 

  64. Wan Y, Zhao D (2007) On the controllable soft-templating approach to mesoporous silicates. Chem Rev 107(7):2821–2860. doi:10.1021/cr068020s

    Article  CAS  Google Scholar 

  65. Waitz T, Wagner T, Sauerwald T et al (2009) Ordered mesoporous In2O3: synthesis by structure replication and application as a methane gas sensor. Adv Funct Mater 19(4):653–661. doi:10.1002/adfm.200801458

    Article  CAS  Google Scholar 

  66. Yang H, Shi Q, Tian B et al (2003) One-step nanocasting synthesis of highly ordered single crystalline indium oxide nanowire arrays from mesostructured frameworks. J Am Chem Soc 125(16):4724–4725. doi:10.1021/ja034005i

    Article  CAS  Google Scholar 

  67. Tian B, Liu X, Yang H et al (2003) General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica. Adv Mater 15(16):1370–1374. doi:10.1002/adma.200305211

    Article  CAS  Google Scholar 

  68. Prim A, Pellicer E, Rossinyol E et al (2007) A novel mesoporous CaO-loaded In2O3 material for CO2 sensing. Adv Funct Mater 17(15):2957–2963. doi:10.1002/adfm.200601072

    Article  CAS  Google Scholar 

  69. Tiemann M (2007) Porous metal oxides as gas sensors. Chem Eur J 13(30):8376–8388. doi:10.1002/chem.200700927

    Article  CAS  Google Scholar 

  70. Waitz T, Becker B, Wagner T et al (2010) Ordered nanoporous SnO2 gas sensors with high thermal stability. Sens Actuators B Chem 150(2):788–793. doi:10.1016/j.snb.2010.08.001

    Article  CAS  Google Scholar 

  71. Wagner T, Krotzky S, Weiß A et al (2011) A high temperature capacitive humidity sensor based on mesoporous silica. Sensors 11(12):3135–3144. doi:10.3390/s110303135

    Article  CAS  Google Scholar 

  72. Gurlo A, Barsan N, Ivanovskaya M et al (1998) In2O3 and MoO3-In2O3 thin film semiconductor sensors: interaction with NO2 and O3. Sens Actuators B Chem 47(1–3):92–99

    Article  CAS  Google Scholar 

  73. Wagner T, Kohl C, Malagù C et al (2013) UV light-enhanced NO2 sensing by mesoporous In2O3: interpretation of results by a new sensing model. Sens Actuators B Chem 187:488–494. doi:10.1016/j.snb.2013.02.025

    Article  CAS  Google Scholar 

  74. Bourgoin JC, Corbett JW (1978) Enhanced diffusion mechanisms. Radiat Eff 36(3):157–188. doi:10.1080/00337577808240846

    Article  CAS  Google Scholar 

  75. Ding J, McAvoy TJ, Cavicchi RE et al (2001) Surface state trap** models for SnO2-based microhotplate sensors. Sens Actuators B Chem 77(3):597–613

    Article  CAS  Google Scholar 

  76. Bárdos L, Libra M (1989) Effect of the oxygen absorption on properties of ITO layers. Special issue polymer physics. Vacuum 39(1):33–36

    Article  Google Scholar 

  77. Kissine VV, Voroshilov SA, Sysoev VV (1999) A comparative study of SnO2 and SnO2:Cu thin films for gas sensor applications. Thin Solid Films 348(1–2):304–311

    Article  CAS  Google Scholar 

  78. Ruhland B, Becker T, Müller G (1998) Gas-kinetic interactions of nitrous oxides with SnO2 surfaces. Sens Actuators B Chem 50(1):85–94

    Article  CAS  Google Scholar 

  79. Kamp B, Merkle R, Maier J (2001) Chemical diffusion of oxygen in tin dioxide. Sens Actuators B Chem 77(1–2):534–542

    Article  CAS  Google Scholar 

  80. Wagner T, Kohl C, Morandi S et al (2012) Photoreduction of mesoporous In2O3: mechanistic model and utility in gas sensing. Chem Eur J. doi:10.1002/chem.201103905

    Google Scholar 

  81. Heiland G, Mollwo E, Stöckmann F (1959) Electronic processes in zinc oxide. Adv Solid State Phys 8:191

    CAS  Google Scholar 

  82. Fritzsche H, Pashmakov B, Claflin B (1994) Reversible changes of the optical and electrical properties of amorphous InOx by photoreduction and oxidation. Special issue dedicated to Professor Bernhard Seraphin. Sol Energ Mat Sol C 32(4):383–393

    Article  CAS  Google Scholar 

  83. Faglia G, Baratto C, Comini E et al (2004) Metal oxide nanocrystals for gas sensing. In: IEEE sensors 2004 conference, Vienna. p 182

    Google Scholar 

  84. Wagner T, Hennemann J, Kohl C et al (2011) Photocatalytic ozone sensor based on mesoporous indium oxide: influence of the relative humidity on the sensing performance. Special section: proceedings of 7th international workshop on semiconductor gas sensors. Thin Solid Films 520(3):918–921. doi:10.1016/j.tsf.2011.04.181

    Article  CAS  Google Scholar 

  85. Pashmakov B, Claflin B, Fritzsche H (1993) Photoreduction and oxidation of amorphous indium oxide. Solid State Commun 86(10):619–622

    Article  CAS  Google Scholar 

  86. Dixit A, Panguluri RP, Sudakar C et al (2009) Robust room temperature persistent photoconductivity in polycrystalline indium oxide films. Appl Phys Lett 94(25):252105–3

    Article  Google Scholar 

  87. Ghiotti G, Chiorino A, Boccuzzi F (1993) Surface chemistry and electronic effects of H2 (D2) on two different microcrystalline ZnO powders. Surf Sci Lett 287–288:A380. doi:10.1016/0167-2584(93)90425-I

    Google Scholar 

  88. Ghiotti G, Chiorino A, Prinetto F (1995) Chemical and electronic characterization of pure SnO2 and Cr-doped SnO2 pellets through their different response to NO. Proceedings of the fifth international meeting on chemical sensors. Sens Actuators B Chem 25:564–567. doi:10.1016/0925-4005(95)85123-2

  89. Chiorino A, Ghiotti G, Prinetto F et al (1997) Characterization of SnO2-based gas sensors. A spectroscopic and electrical study of thick films from commercial and laboratory-prepared samples. Sens Actuators B Chem 44(1–3):474–482. doi:10.1016/S0925-4005(97)00238-4

    Article  CAS  Google Scholar 

  90. Lenaerts S, Roggen J, Maes G (1995) FT-IR characterization of tin dioxide gas sensor materials under working conditions. Spectrochim Acta A Mol Biomol Spectrosc 51(5):883–894. doi:10.1016/0584-8539(94)01216-4

    Article  Google Scholar 

  91. Jarzebski ZM (1976) Physical properties of SnO2 materials. J Electrochem Soc 123(9):299C. doi:10.1149/1.2133090

    Article  CAS  Google Scholar 

  92. Jarzebski ZM (1976) Physical properties of SnO2 materials. J Electrochem Soc 123(10):333C. doi:10.1149/1.2132647

    Article  CAS  Google Scholar 

  93. Göpel W, Lampe U (1980) Influence of defects on the electronic structure of zinc oxide surfaces. Phys Rev B 22(12):6447–6462. doi:10.1103/PhysRevB.22.6447

    Article  Google Scholar 

  94. Hausmann A, Schallenberger B (1978) Interstitial oxygen in zinc oxide single crystals. Z Physik B 31(3):269–273. doi:10.1007/BF01352351

    Article  CAS  Google Scholar 

  95. Samson S, Fonstad CG (1973) Defect structure and electronic donor levels in stannic oxide crystals. J Appl Phys 44(10):4618–4621

    Article  CAS  Google Scholar 

  96. Cao H, Qiu X, Liang Y et al (2003) Room-temperature ultraviolet-emitting In2O3 nanowires. Appl Phys Lett 83(4):761–763

    Article  CAS  Google Scholar 

  97. Malagu C, Giberti A, Morandi S et al (2011) Electrical and spectroscopic analysis in nanostructured SnO2: “Long-term” resistance drift is due to in-diffusion. J Appl Phys 110(9):93711–93715

    Article  Google Scholar 

  98. Shur M (1990) Physics of semiconductor devices. Prentice Hall series in solid state physical electronics. Prentice Hall, Englewood Cliffs

    Google Scholar 

  99. Naydenov A, Stoyanova R, Mehandjiev D (1995) Ozone decomposition and CO oxidation on CeO2. J Mol Catal A 98(1):9–14

    Article  CAS  Google Scholar 

  100. Mills A, Lee S, Lepre A (2003) Photodecomposition of ozone sensitised by a film of titanium dioxide on glass. J Photoch Photobio A 155(1–3):199–205

    Article  CAS  Google Scholar 

  101. Korotcenkov G, Ivanov M, Blinov I et al (2007) Kinetics of indium oxide-based thin film gas sensor response: the role of “redox” and adsorption/desorption processes in gas sensing effects. Thin Solid Films 515(7–8):3987–3996. doi:10.1016/j.tsf.2006.09.044

    Article  CAS  Google Scholar 

  102. Thiel PA, Madey TE (1987) The interaction of water with solid surfaces: fundamental aspects. Surf Sci Rep 7(6–8):211–385. doi:10.1016/0167-5729(87)90001-X

    CAS  Google Scholar 

  103. Roehl CM, Orlando JJ, Tyndall GS et al (1994) Temperature dependence of the quantum yields for the photolysis of NO2 near the dissociation limit. J Phys Chem 98(32):7837–7843. doi:10.1021/j100083a015

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Claus-Dieter Kohl, Sara Morandi, Cesare Malagù, Mariangela Latino, and Giovanni Neri for the valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wagner, T., Donato, N., Tiemann, M. (2013). New Sensing Model of (Mesoporous) In2O3 . In: Kohl, CD., Wagner, T. (eds) Gas Sensing Fundamentals. Springer Series on Chemical Sensors and Biosensors, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/5346_2013_57

Download citation

Publish with us

Policies and ethics

Navigation