• 560 Accesses

Abstract

In contrast to the potential neurotoxic effects of several other neurotransmitters, serotonergic neurotoxicity is less explored in both the clinical and experimental setting. Although the selective neurotoxicity of serotonin is well-established, in the real world neurotoxic effects of this transmitter are equivocal. This is best exemplified by the designer drug MDMA (3,4-methylenedioxymethamphetamine), a compound which receives a lot of public interest. However, in practice the pharmacology of MDMA itself is not well-defined, it is not known whether toxicity is direct or indirect, and although acute neurotoxic effects of MDMA are based on solid observations, chronic neurotoxicity remains unproven even though a number of claims have been published. From the scientific viewpoint, the contribution of serotonergic neurotoxicity to MDMA neurotoxicity, in particular in the chronic situation, remains ill-defined and awaits further clarification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Axt KJ, Mamounas LA, Molliver ME (1994) Structural features of amphetamine neurotoxicity in the brain. In: Cho AK, Segal DS (eds) Amphetamine and its analogs. Psychopharmacology, toxicology, and abuse. Academic Press, San Diego New York Boston London, pp 315–367

    Google Scholar 

  • Baggott M, Heifets B, Jonses RT, Mendelson J, Sferios E, Zehnder J (2000) Chemical analysis of Ecstasy pills. JAMA 284:2190–2191

    Article  CAS  PubMed  Google Scholar 

  • Battaglia G, Yeh SY, O'Hearn E, Molliver ME, Kuhar MJ (1987) 3,4-Methylenedioxy-methamphetamine and 3,4-methylendioxyamphetamine destroy serotonin terminal in rat brain: quantification of neurodegeneration by measurement of (3H)paroxetine labeled serotonin uptake sites. J Pharmacol Exp Ther 242:911–916

    CAS  PubMed  Google Scholar 

  • Battaglia G, Sharkey J, Kuhar MJ, De Souza EB (1991) Neuroanatomic specificity and time course of alterations in rat brain serotonergic pathways induced by MDMA (3,4-methylenedioxymethamphetamine): assessment using quantitative autoradiography. Synapse 8:249–260

    Article  CAS  PubMed  Google Scholar 

  • Bean P, Stratford N, White C, Goodman M, Maylon T, Charles V, O'Hagan C, Woolvert G (1997) Release drugs and dance survey: an insight into the culture. Release Publications, London

    Google Scholar 

  • Bhattachary SJ, Powell JH (2001) Recreational use of 3,4-methylenedioximethamphetamine (MDMA) or “ecstasy”: evidence for cognitive impairment. Psychol Med 31:647–658

    Article  CAS  PubMed  Google Scholar 

  • Bolla KI, McCann DU, Ricaurte GA (1998) Memory impairment in abstinent MDMA (“Ecstasy”) users. Neurology 51:1532–1537

    CAS  PubMed  Google Scholar 

  • Bradley A, Baker O (1999) Drugs in the United Kingdom — a jigsaw with missing pieces. Soc Trends 29:15–28

    Google Scholar 

  • Brodkin J, Malyala A, Nash JF (1993) Effects of acute monamine depletion on 3,4-metyhylenedioxymethamphetamine-induced neurotoxicity. Pharmacol Biochem Behav 45:647–653

    Article  CAS  PubMed  Google Scholar 

  • Chang L, Ernst T, Grob CS, Poland RE (1999) Cerebral 'H MRS alterations in recreational 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) users. J Magn Reson Imaging 10:521–526

    Article  CAS  PubMed  Google Scholar 

  • Chang L, Grob CS, Ernst T, Itti L, Mishkin FS, Jose-Melchor R, Poland RE (2000) Effect of ecstasy (3,4-methylenedioxymethamphetamine (MDMA)) on cerebral blood flow; a co-registered SPECT and MRI study. Psychiatr Res NeuroImaging 98:15–28

    CAS  Google Scholar 

  • Cho K, Ennaceur A, Cole JC, Suh CK (2000) Chronic jet-lag produces cognitive deficits. J Neurosci 20:RC66

    CAS  PubMed  Google Scholar 

  • Chu T, Kumagai Y, DiStefano EW, Cho AK (1996) Disposition of methylenedioxymethamphetamine and three metabolites in the brains of different rat strains and their possible roles in acute serotonin depletion. Biochem Pharmacol 51:789–796

    Article  CAS  PubMed  Google Scholar 

  • Cole JC, Sumnall HR (2003) Altered states: the clinical effects of Ecstasy. Pharmacology & Therapeutics 98:35–58

    Article  CAS  Google Scholar 

  • Cole JC, Bailey M, Sumnall HR, Wagstaff GF, King LA (2002a) The content of ecstasy tablets: implications for the study of their long-term effects. Addiction 97:1531–1536

    PubMed  Google Scholar 

  • Cole JC, Sumnall HR, Wagstaff GF (2002b) What is a dose of ecstasy? J Psychopharmacol 16:187–189

    Google Scholar 

  • Commins DL, Vosmer G, Virus RM, Woolverton WL, Schuster CR, Seiden LS (1987) Biochemical and histological evidence that methylenedioxymethamphetamine (MDMA) is toxic to neurons in the rat brain. J Pharmacol Exp Ther 241:338–345

    CAS  PubMed  Google Scholar 

  • Croft RJ, Klugman A, Baldeweg T, Gruzelier JGH (2001) Electrophysiological evidence of serotonergic impairment in long-term MDMA (“Ecstasy”) users. Am J Psychiatry 158:1687–1692

    Article  CAS  PubMed  Google Scholar 

  • Esteban B, O'Shea E, Camarero J, Sanchez V, Green AR, Colado MI (2001) 3,4-Methylenedioxymethamphetamine induces monoamine release, but not toxicity, when administered centrally at a concentration occurring following a peripherally injected neurotoxic dose. Psychopharmacology 154:251–260

    Article  CAS  PubMed  Google Scholar 

  • Farfel GM, Seiden LS (1995) Role of hypothermia in the mechanism of protection against serotonergic toxicity: I. Experiments using 3,4-methylenedioxymethamphetamine, dicocilpine, CGS19755 and NBQX. J Pharmacol Exp Ther 272:860–867

    CAS  PubMed  Google Scholar 

  • Forsyth AJ (1995) Ecstasy and illegal drug design: a new concept in drug use. Int J Drug Policy 6:193–209

    Google Scholar 

  • Forsyth AJ (1996) Places and patterns of drug use in the Scottish dance scene. Addiction 91:511–521

    Article  CAS  PubMed  Google Scholar 

  • Gamma A, Buck A, Berthold T, Liechti ME, Vollenweider FX (2000a) 3,4-Methylenedi-oxymethamphetamine (MDMA) modulates cortical and limbic brain activity as measured by (H2150)-PET in healthy humans. Neuropsychopharmacology 23:157–162

    Article  Google Scholar 

  • Gerra G, Zaimovic A, Giucastro G, Maestri D, Monica C, Sartori R, Caccavari R, Delsignore R (1998) Serotonergic function after (±)3,4-methylene-dioxymethamphetamine (“Ecstasy”) in humans. Int Clin Psychopharmacol 13:1–9

    CAS  PubMed  Google Scholar 

  • Gore SM (1999) Fatal uncertainty: death-rate from use of ecstasy or heroin. Lancet 354:1265–1266

    Article  CAS  PubMed  Google Scholar 

  • Gordon CJ, Watkinson WP, O'Callaghan JP, Miller DB (1991) Effects of 3,4-methylenedioxymethamphetamine on autonomic thermoregulatory responses of the rat. Pharmacol Biochem Behav 38:339–344

    Article  CAS  PubMed  Google Scholar 

  • Greer G, Tolbert R (1986) Subjective reports of the effects of MDMA in a clinical setting. J Psychoact Drugs 18:319–327

    CAS  Google Scholar 

  • Gudelsky GA, Nash JF (1996) Carrier-mediated release of serotonin by 3,4-methylenedioxymethamphetamine: implications for serotonin-dopamine interactions. J Neurochem 66:243–249

    CAS  PubMed  Google Scholar 

  • Heinz A, Jones DW (2000) Serotonin transporters in ecstasy users. Br J Psychiatry 176:193–195

    Article  CAS  PubMed  Google Scholar 

  • Heinz A, Jones DW, Mazzanti C, Goldman D, Ragan P, Hommer D, Linnoila M, Weinberger DR (2000) A relationship between the serotonin transporter genotype and in vivo protein expression and alcohol neurotoxicity. Biol Psychiatry 47:643–649

    Article  CAS  PubMed  Google Scholar 

  • Johnston LD, O'Malley PD, Bachman JG (2001) National survey results on drug use from the Monitoring the Future study. 1975–2000. Press Release, National Institute on Drug Abuse, Rockville

    Google Scholar 

  • Kish SJ (2002) How strong is the evidence that brain serotonin neurons are damaged in human users of ecstasy? Pharmacol Biochem Behav 71:845–855

    Article  CAS  PubMed  Google Scholar 

  • Kish SJ (2003) What is the evidence that ecstasy (MDMA) can cause Parkinson's disease? Mov Disord 18:1219–1223

    Article  PubMed  Google Scholar 

  • Liechti ME, Baumann C, Gamma A, Vollenweider FX (2000) Acute psychological effects of 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”) are attenuated by the serotonin uptake inhibitor citalopram. Neuropsychopharmacology 22:513–521

    Article  CAS  PubMed  Google Scholar 

  • Ludolph AC, Spencer PS (1996) Toxic models of upper motor neuron disease. J Neurol Sci 139Suppl:53–59

    PubMed  Google Scholar 

  • Malberg JE, Seiden LS (1998) Small changes in ambient temperature cause large changes in 3,4-methylenedioxymetamphetamine (MDMA)-induced serotonin neurotoxicity and core body temperature in the rat. J Neurosci 18:5086–5094

    CAS  PubMed  Google Scholar 

  • Malberg JE, Sabol KE, Seiden LS (1996) Co-administration of MDMA with drugs that protect against MDMA neurotoxicity produces different effects on body temperature in the rat. J Pharmacol Exp Ther 278:258–267

    CAS  PubMed  Google Scholar 

  • McCann U, Ricaurte GA (1991) Lasting neuropsychiatric sequelae of (+) methylenedioxymethamphetamine (“ecstasy”) in recreational users. J Clin Psychopharmacol 11:302–305

    CAS  PubMed  Google Scholar 

  • McCann U, Ricaurte GA (1992) MDMA (“ecstasy”) and panic disorder: induction by a single dose. Biol Psychiatry 31:950–953

    Article  Google Scholar 

  • McCann U, Szabo Z, Scheffel U, Dannals R, Ricaurte GA (1998) Positron emission tomographic evidence of toxic effect of MDMA (“ecstasy”) on brain serotonin neurons in human beings. Lancet 352:1433–1437

    Article  CAS  PubMed  Google Scholar 

  • McDermott P (1993) MDMA use in the north west of England. Int J Drug Policy 4:210–221

    Google Scholar 

  • McGuire P, Fahy T (1992) Flashbacks following MDMA. Br J Psychiatry 160:276

    CAS  PubMed  Google Scholar 

  • McKenna DJ, Peroutka SJ (1990) Neurochemistry and neurotoxicity of 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”). J Neurochem 5414–5422

    Google Scholar 

  • Mills EM, Banks ML, Sprague JE, Finkel T (2003) Uncoupling the agony from ecstasy. Nature 426:404–405

    Article  Google Scholar 

  • Nash JF (1990) Ketanserin pretreatment attenuates MDMA-induced dopamine release in the striatum as measured by microdialysis. Life Sci 47:2401–2408

    CAS  PubMed  Google Scholar 

  • Nichols DE (1986) Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: entactogens. J Psychoact Drugs 18:305–313

    CAS  Google Scholar 

  • Obergriesser T, Ende G, Braus DF, Henn FA (2001) Hippocampal 1H-MRSI in ecstasy users. Eur Arch Clin Neurosci 251:114–116

    CAS  Google Scholar 

  • Office for National Statistics (2000) ONS drug-related deaths database: first results for England and Wales, 1993–1997. Health Stat Q 5:57–60

    Google Scholar 

  • Office for National Statistics (2001) Deaths related to drug poisoning England and Wales, 1995–1999. Heal 316

    Google Scholar 

  • Peroutka SJ, Pascoe N, Faull KF (1987) Monoamine metabolites in the cerebrospinal fluid of recreational users of 3,4-methylenedioxymethamphetamine (MDMA; “Ecstasy”). Res Commun Subst Abus 8:125–138

    Google Scholar 

  • Reneman L, Booij J, Schmand B, van den Brink W, Gunning B (2000a) Memory disturbances in “Ecstasy” users are correlated with an altered brain serotonin neurotransmission. Psychopharmacology 148:322–324

    Article  CAS  PubMed  Google Scholar 

  • Reneman L, Habraken JBA, Majoie CBL, Booij J, den Heeten GJ (2000b) MDMA (“Ecstasy”) and its association with cerebrovascular accidents: preliminary findings. Am J Neuroradiol 21 (2000b) 1001–1007

    CAS  PubMed  Google Scholar 

  • Reneman L, Booij J, de Bruin K, Reltsma JB, de Wolff FA, Gunning WB, den Heeten GJ, van den Brink W (2001 a) Effects of dose, sex and long term abstention from use on toxic effects of MDMA (ecstasy) on brain serotonin neurons. Lancet 358:1864–1869

    Article  CAS  PubMed  Google Scholar 

  • Reneman L, Lavalaye J, Schmand B, de Wolff FA, van den Brink W, den Heeten GJ, Booij J (2001 b) Cortical serotonin transporter density and verbal memory in individuals who stopped using 3,4-methylenedioxymethamphetamine (MDMA or “Ecstasy”). Arch Gen Psychiatry 58:901–906

    CAS  PubMed  Google Scholar 

  • Reneman L, Majoie CB, den Heeten GJ (2001 c) Effects of “Ecstasy” (MDMA) on the brain in abstinent users: initial observations with diffusion and perfusion MR imaging. Radiology 220:611–617

    CAS  PubMed  Google Scholar 

  • Reneman L, Majoie CB, Schmand B, van den Brink W, den Heeten GJ (2001 d) Prefrontal N-acetylaspartate is strongly associated with memory performance in (abstinent) ecstasy users: preliminary report. Biol Psychiatry 50:550–554

    Article  CAS  PubMed  Google Scholar 

  • Ricaurte GA, DeLanney LE, Irwin I, Langston JW (1988) Toxic effects of MDMA on central serotonergic neurons in the primate: importance of frequency and route of drug administration. Brain Res 446:165–168

    Article  CAS  PubMed  Google Scholar 

  • Ricaurte GA, Yuan J, Hatzidimitriou G, Cord BJ, McCann UD (2002) Severe dopaminergic neurotoxicity in primates after a common recreational dose regimen of MDMA (“Ecstasy”). Science 297:2260–2263

    Article  CAS  PubMed  Google Scholar 

  • Ricaurte GA, Yuan J, Hatzidimitriou G, Cord BJ, McCann UD (2003) Retraction of the report “Severe dopaminergic neurotoxicity”. Science 301:1479

    Article  CAS  PubMed  Google Scholar 

  • Sabol KE, Lew R, Richards JB, Vosmer GL, Seiden LS (1996) Methylenedioxymethamphetamine-induced serotonin deficits are followed by partial recovery over a 52-week period: part I. Synaptosomal uptake and tissue concentrations. J Pharmacol Exp Ther 276:846–854

    CAS  PubMed  Google Scholar 

  • Schmidt CJ, Black CK, Abbate GM, Taylor VM (1990) Methylenedioxymethamphetamine-induced hyperthermia and neurotoxicity are independently mediated by 5-HT2 receptors. Brain Res 529:85–90

    Article  CAS  PubMed  Google Scholar 

  • Semple DM, Ebmeier KP, Glabus MF, O'Carroll RE, Johnstone EC (1999) Reduced in vivo binding of the 5-HAT transporter in the cerebral cortex of MDMA (“Ecstasy”) users. Br J Psychiatry 125:63–69

    Google Scholar 

  • Stone DM, Merchnat KM, Hanson GR, Gibb JW (1987) Immediate and long-term effects of 3,4-methylenedioxymethamphetamine on serotonin pathways in brain of rat. Neuropharmacology 26:1677–1683

    CAS  PubMed  Google Scholar 

  • Spencer PS, Schaumburg HH, Ludolph AC (2000) Experimental and clinical neurotoxicology, 2nd edn. Oxford Univ Press

    Google Scholar 

  • Spruit IP (1999) Ecstasy use and policy responses in the Netherlands. J Drug Issues 29:653–678

    Google Scholar 

  • Thomasius R, Petersen K, Buchert, R, Andresen B, Zapletalova P, Wartberg L, Nebeling B, Schmoldt A (2003) Mood, cognition and serotonin transporter availability in current and former ecstasy (MDMA) users. Psychopharmacology 167:85–96

    CAS  PubMed  Google Scholar 

  • Vollenweider FX, Gamma A, Liechti M, Huber T (1998) Psychological and cardiovascular effects and short-term sequelae of MDMA (“ecstasy”) in MDMA-naive healthy volunteers. Neuropsychopharmacology 19:241–251

    Article  CAS  PubMed  Google Scholar 

  • White SR, Obradovic T, Imel KM, Wheaton MJ (1996) The effects of methylenedioxymethamphetamine (MDMA, “ecstasy”) on monoaminergic neurotransmission in the central nervous system. Prog Neurobiol 49:455–479

    Article  CAS  PubMed  Google Scholar 

  • Winstock AR, Griffiths P, Stewart D (2001) Drugs and the dance music scene: a survey of current drug use patterns among a sample of dance music enthusiasts in the UK. Drug Alcohol Depend 64:9–17

    CAS  PubMed  Google Scholar 

  • World Health Organization (1997) Amphetamine-like stimulants. A report from the WHO meeting on amphetamines, MDMA and other psychostimulants. Geneva, 12–16 November 1996. WHO, Geneva

    Google Scholar 

  • Zakzanis KK, Young DA (2001) Memory impairment in abstinent MDMA ('ecstasy') users: a longitudinal investigation. Neurology 56:966–969

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Steinkopff Verlag Darmstadt

About this paper

Cite this paper

Ludolph, A.G., Ludolph, A.C. (2005). Serotonergic neurotoxicity — the example MDMA. In: Przuntek, H., Müller, T. (eds) Das serotonerge System aus neurologischer und psychiatrischer Sicht. Steinkopff. https://doi.org/10.1007/3-7985-1537-9_3

Download citation

  • DOI: https://doi.org/10.1007/3-7985-1537-9_3

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1499-7

  • Online ISBN: 978-3-7985-1537-6

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics

Navigation