Alkyl 2-Chloro-2-cyclopropylideneacetates—Remarkably Versatile Building Blocks for Organic Synthesis

  • Chapter
  • First Online:
Small Ring Compounds in Organic Synthesis VI

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 207))

Abstract

Strain in small rings has evolved as one of the principles used to control reactivity and chemoselectivity in transformations of organic compounds. The combination of small rings with multiple bonds and functional groups establishes composite functionalities which demonstrate unique multiple reactivity and thereby potentially high synthetic utility. This survey concentrates on a family of compounds which combines the chemistry of methylenecyclopropanes and that of electron-acceptor-activated alkenes, namely alkyl 2-chloro-2-cyclopropylideneacetates of types 1–3. This special feature makes the compounds 1–3 multifunctional as well as highly reactive, and thus extremely versatile building blocks for organic synthesis. Not only is the general synthetic access to methylenecyclopropanes 1–3 presented here, but particularly their rich chemistry as highly reactive Michael acceptors, dienophiles, dipolarophiles and general cyclophiles which leads to a wide range of different types of functionally substituted cyclopropane derivatives, spirocyclopropane-annelated hetero- and carbocycles, mono- and oligocondensed cycles, natural and unnatural amino acids and peptidomimetics, and more. Finally, the first results obtained with polymer-bound substrates of types 1–3 in a combinatorial approach to libraries of potentially biologically active compounds are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. de Meijere A (ed) (1997) Houben-Weyl, Thieme, Stuttgart, vol E 17a–c

    Google Scholar 

  2. a) de Meijere A (ed) (1986) Small ring compounds in organic synthesis I. Top Curr Chem 133. Springer, Berlin Heidelberg New York; b) de Meijere A (ed) (1987) Small ring compounds in organic synthesis II. Top Curr Chem 135. Springer, Berlin Heidelberg New York; c) Rappoport Z (ed) (1987) The chemistry of the cyclopropyl group. Wiley, Chichester; d) de Meijere A (ed) (1988) Small ring compounds in organic synthesis III. Top Curr Chem 144. Springer, Berlin Heidelberg New York; e) de Meijere A, Blechert S (eds) (1989) Strain and its implications in organic chemistry. NATO-ASI Series C, Kluwer, Dordrecht, vol 273; f) de Meijere A (ed) (1990) Small ring compounds in organic synthesis IV. Top Curr Chem 155. Springer, Berlin Heidelberg New York; g) Wong HNC, Hon M-Y, Tse C-W, Yip Y-C, Tanko J, Hudlicky T (1989) Chem Rev 89:165; h) de Meijere A (ed) (1996) Small ring compounds in organic synthesis V. Top Curr Chem 178. Springer, Berlin Heidelberg New York

    Google Scholar 

  3. Trost BM (1989) In: de Meijere A, Blechert S (eds) Strain and its implications in organic chemistry. NATO-ASI Series C, Kluwer, Dordrecht, vol 273, p 1ff

    Google Scholar 

  4. a) Binger P, Büch HM, Top Curr Chem (1987) 135:77; b) Binger P, Schmidt T (1997) In: de Meijere A (ed) Houben-Weyl, Thieme, Stuttgart, vol E 17c, p 2217; c) Brandi A, Goti A (1998) Chem Rev 98:589; d) de Meijere A, Kozhushkov SI, Khlebnikov AF (1999) Top Curr Chem, this volume

    CAS  Google Scholar 

  5. For previous reviews of our own work in this area see: a) de Meijere A (1987) Chemistry in Britain 23:865; b) de Meijere A, Wessjohann L (1990) Synlett 20; c) Mißlitz U, de Meijere A (1989) In: Regitz M, Hanack M (eds) Houben-Weyl, Thieme, Stuttgart, vol 4, p 664 and 769; d) de Meijere A (1992) In: Yoshida Z, Ohshiro Y (eds) New Aspects of Organic Chemistry II. Kodansha-VCH, Tokyo-Weinheim, p 181

    Google Scholar 

  6. a) Stohlmeier M (1988) Dissertation, Universität Hamburg; b) Banwell MG, Corbett M, Gulbis J, MacKay MF, Reum ME (1993) J Chem Soc Perkin Trans 1:945

    Google Scholar 

  7. a) Weber A, de Meijere A (1980) Angew Chem 92:135 Angew Chem Int Ed Engl 19:138; b) Liese T, Splettstößer G, de Meijere A (1982) Tetrahedron Lett 23:3341; c) Liese T, de Meijere A (1982) Angew Chem 94:65 Angew Chem Int Ed Engl 21:65; d) Weber W, de Meijere A (1985) Chem Ber 118:2450; e) Liese T, de Meijere A (1986) Chem Ber 119:2995; f) Liese T, Jaekel F, de Meijere A (1990) Org Synth 69:144; g) Liese T (1983) Dissertation, Universität Hamburg; h) Seyed-Mahdavi F (1986), Dissertation, Universität Hamburg; i) Wenck H (1986) Dissertation, Universität Hamburg; j) de Meijere A, Kozhushkov SI (unpublished results); k) Kordes M (1999) Dissertation, Universität Göttingen; l) Michaelsen H (1994) Dissertation, Universität Göttingen; m) Wessjohann L (1990) Dissertation, Universität Hamburg

    Article  CAS  Google Scholar 

  8. Wessjohann L, Giller K, Zuck B, Skattebøl L, de Meijere A (1993) J Org Chem 58:6442

    Article  CAS  Google Scholar 

  9. Wessjohann L, Krass N, Yu D, de Meijere A (1992) Chem Ber 125:867

    Article  CAS  Google Scholar 

  10. a) Es-Sayed M, Gratkowski C, Krass N, Meyers AI, de Meijere A (1993) Tetrahedron Lett 34:289; b) Gratkowski C (1994) Dissertation, Universität Göttingen; c) Es-Sayed M (1992) Dissertation, Universität Hamburg

    Article  CAS  Google Scholar 

  11. a) Ricker CB (1996) Diplomarbeit, Universität Göttingen; b) Ricker CB (1999) Dissertation, Universität Göttingen; c) Labahn T, Noltemeyer M, Heiner T, Ricker CB, de Meijere A (1999) Acta Cryst C (to be submitted)

    Google Scholar 

  12. a) Glück C, Poignée V, Schwager H (1987) Synthesis: 260; b) Sepiol J, Soulen RL (1975) J Org Chem 40:3791

    Google Scholar 

  13. Kostikov RR, de Meijere A (1984) J Chem Soc Chem Commun 1528

    Google Scholar 

  14. In the few known cases of intermolecular reactions of thermally or photochemically generated vinylcarbenes, the yields are markedly lower: a) Franck-Neumann M, Lohmann JJ (1977) Angew Chem 89:331 Angew. Chem Int Ed Engl 16:323 Angew Chem Suppl 1715; b) Stang PJ (1978) Chem Rev 78:383; c) Franck-Neumann M, Lohmann JJ (1979) Tetrahedron Lett 2397; d) Bruce MI (1991) Chem Rev 91:197

    Article  CAS  Google Scholar 

  15. a) Liese T, Splettstößer G, de Meijere A (1982) Angew Chem 94:799 Angew Chem Int Ed Engl 21:790; b) Liese T, Teichmann S, de Meijere A (1988) Synthesis 25

    Article  CAS  Google Scholar 

  16. Liese T, Seyed-Mahdavi F, de Meijere A (1990) Org Synth 69:148

    CAS  Google Scholar 

  17. Our recent experience allows one to increase the yield of this transformation up to 85% if this first SN2′-type replacement has been performed at 20°C for 24 h followed by heating under reflux. Ricker CR, Rauch K (unpublished results)

    Google Scholar 

  18. a) Salaün J, Bennani F, Compain J-C, Fadel A, Ollivier J (1980) J Org Chem 45:4129; b) Spitzner D, Swoboda H (1986) Tetrahedron Lett 27:1281; c) Osborne NF (1982) J Chem Soc Perkin Trans 1:1435

    Article  Google Scholar 

  19. a) de Meijere A, Teichmann S, Seyed-Mahdavi F, Kohlstruk S (1996) Liebigs Ann 1989; b) Kohlstruk S (1992) Dissertation, Universität Göttingen

    Google Scholar 

  20. Seebach D, Hungerbühler E, Naef R, Schnurrenberger P, Weidmann B, Züger M (1982) Synthesis: 138; b) Krass N, Wessjohann L, Yu D, de Meijere A (1989) In: de Meijere A, Blechert S (eds) Strain and its Implications in Organic Chemistry. NATO-ASI Series C, Kluwer Academic Publ, Dordrecht, p 509

    Google Scholar 

  21. a) de Meijere A, Ernst K, Zuck B, Brandl M, Kozhushkov SI, Tamm M, Yufit DS, Howard JAK, Labahn T (1999) Eur J Org Chem in press; b) Ernst K (1994) Dissertation, Universität Göttingen

    Google Scholar 

  22. a) Brandl M, de Meijere A (unpublished results); b) Sokolov VI, de Meijere A (unpublished results); c) Rauch K, de Meijere A (unpublished results)

    Google Scholar 

  23. de Meijere A (1984) Bull Soc Chim Belg 93:241

    Article  Google Scholar 

  24. Bengtson G (1985) Dissertation, Universität Hamburg

    Google Scholar 

  25. a) Michalski SA (1989) Diplomarbeit, Universität Hamburg; b) Michalski SA (1992) Dissertation, Universität Hamburg

    Google Scholar 

  26. a) de Meijere A, Teichmann S, Yu D, Kopf J, Oly M, von Thienen N (1989) Tetrahedron 45:2957; b) Teichmann S (1988) Dissertation, Universität Hamburg

    Article  Google Scholar 

  27. Seyed-Mahdavi F, Teichmann S, de Meijere A (1986) Tetrahedron Lett 27:6185

    Article  CAS  Google Scholar 

  28. Spitzner D, Engler A, Wagner P, de Meijere A, Bengtson G, Simon A, Peters K, Peters E-M (1987) Tetrahedron 43:3213

    Article  CAS  Google Scholar 

  29. de Meijere A, Wenck H, Seyed-Mahdavi F, Viehe HG, Gallez V, Erden I (1986) Tetrahedron 42:1291

    Article  Google Scholar 

  30. Heiner T (1996) Dissertation, Universität Göttingen

    Google Scholar 

  31. Dolbier WR Jr, Lomas D, Garza T, Harmon C, Tarrant P (1972) Tetrahedron 28:3185

    Article  CAS  Google Scholar 

  32. Stella L, Janousek Z, Merényi R, Viehe HG (1978) Angew Chem 90:741 Angew Chem Int Ed Engl 17:691

    Article  CAS  Google Scholar 

  33. Yu D (1989) Dissertation, Universität Hamburg

    Google Scholar 

  34. Narasaka K, Soai K, Mukaiyama T (1974) Chem Lett 1223

    Google Scholar 

  35. Conditions as optimized by Paulsen et al: Paulsen H, Hölck J-P (1982) Liebigs Ann Chem 1121. Cf. also [74]

    Google Scholar 

  36. a) Staudinger H, Meyer J (1919) Helv Chim Acta 2:635; b) Review: Gololobov YuG, Kasukhin LF (1992) Tetrahedron 48:1353; c) Mitchell D, Liebeskind LS (1990) J Am Chem Soc 112:291

    Article  CAS  Google Scholar 

  37. Reviews: a) Subramanian LR, Zeller K-P (1997) In: de Meijere A (ed) Houben-Weyl, vol E 17a, Thieme, Stuttgart, p 256; b) Simmons HE, Cairns TL, Vladuchik SA, Hoiness CM (1973) Org React 20:1

    Google Scholar 

  38. a) Corey EJ, Chaykovsky M (1962) J Am Chem Soc 84:3782; b) Corey EJ, Chaykovsky M (1965) J Am Chem Soc 87:1353; c) Asunskis J, Shechter H (1968) J Org Chem 33:1164; d) Landor SR, Punja N (1967) J Chem Soc C 2495

    Article  CAS  Google Scholar 

  39. de Meijere A, Kozhushkov SI, Yufit DS, Boese R, Haumann T, Pole DL, Sharma PK, Warkentin J (1996) Liebigs Ann 601

    Google Scholar 

  40. Regitz M, Heydt H (1984) In: Padwa A (ed) 1, 3-Dipolar cycloaddition chemistry, Wiley, New York, vol 1, p 393

    Google Scholar 

  41. Aspartt-Pascot L, Bastide J (1971) Comptes Rendus Acad Sci Ser C 273:1772

    Google Scholar 

  42. Moffat JB (1978) J Phys Chem 82:1083

    Article  CAS  Google Scholar 

  43. a) Zorn C, Goti A, Brandi A, Johnsen K, Kozhushkov SI, de Meijere A (1998) Chem Commun: 903; b) Zorn C, Goti A, Brandi A, Johnsen K, Noltemeyer M, Kozhushkov SI, de Meijere A (1999) J Org Chem 64:755

    Google Scholar 

  44. a) Danishefsky S (1979) Acc Chem Res 12:66; b) Loreto MA, Pellacani L, Tardella PA (1979) J Heterocyclic Chem 16:1233

    Article  CAS  Google Scholar 

  45. a) Caserio MC, Graham WH, Roberts JD (1960) Tetrahedron 11:171; b) Roberts JD, Mazur RH (1951) J Am Chem Soc 73:2509; c) Renk E, Roberts JD (1961) J Am Chem Soc 83:878; Review: Klunder AJH, Zwanenburg B (1997) In: de Meijere A (ed) Houben-Weyl, vol E 17c, Thieme, Stuttgart, p 2419 ff

    Article  CAS  Google Scholar 

  46. a) Primke H, Sarin GS, Kohlstruk S, Adiwidjaja G, de Meijere A (1994) Chem Ber 127:1051; b) Primke H (1989) Dissertation, Universität Hamburg

    Article  CAS  Google Scholar 

  47. a) Anchel M, Hervey A, Robbins WJ (1950) Proc Nat Acad Sci USA 36:300; b) Anchel M, Hervey A, Robbins WJ (1952) Proc Nat Acad Sci USA 38:927; c) McMorris TC, Anchel M (1965) J Am Chem Soc 87:1594; d) McMorris TC, Kelner MJ, Chadha RK, Siegel JS, Moon S-s, Moya MM (1989) Tetrahedron 45:5433; e) Niwa H, Ojika M, Wakamatsu K, Yamada K, Ohba S, Saito Y, Hirono I, Matsushita K (1983) Tetrahedron Lett 24:5371; f) Ohba S, Saito Y, Hirono I, Niwa H, Ojika M, Wakamatsu K, Yamada K (1984) Acta Cryst C 40:1877; g) Ojika M, Wakamatsu K, Niwa H, Yamada K (1987) Tetrahedron 43:5261; h) Kelner MJ, McMorris TC, Beck WT, Zamora JM, Taetle R (1987) Cancer Med Research 47:3186; i) Kelner MJ, McMorris TC, Taetle R (1990) J Natl Cancer Inst 82:1562; j) McMorris T C, Kelner MJ, Wang W, Moon S, Taetle R (1990) Chem Res Toxicol 3:574; k) McMorris TC, Kelner MJ, Wang W, Estes LA, Montoya MA, Taetle R (1992) J Org Chem 57:6876; l) Review: Yamada K, Ojika M, Kigoshi H (1998) Angew Chem 110:1918 Angew Chem Int Ed Engl 37:1818

    Article  CAS  Google Scholar 

  48. Ptaquilosin is the aglycon of the potent carcinogen ptaquiloside, which has the same skeleton as illudin M: a) Kigoshi H, Imamura Y, Mizuta K, Niwa H, Yamada K (1973) J Am Chem Soc 115:3056; b) Kigoshi H, Sawada A, Nakayama Y, Niwa H, Yamada K (1989) Tetrahedron Lett 30:1983; c) Kigoshi H, Imamura Y, Mizuta K, Niwa H, Yamada K (1993) J Am Chem Soc 115:3056. Ptaquiloside: d) Kushida T, Uesugi M, Sugiura Y, Kigoshi H, Tanaka H, Hirokawa J, Ojika M, Yamada K (1994) J Am Chem Soc 116:479; e) Kigoshi H, Imamura Y, Mizuta K, Niwa H, Yamada K (1993) J Am Chem Soc 115:3056; f) Kigoshi H, Tanaka H, Hirokawa J, Mizuta K, Yamada K (1992) Tetrahedron Lett 33:6647

    Article  Google Scholar 

  49. a) Schore NE (1991) Org React 40:1; b) Schore NE (1991) In: Trost BM, Fleming I (eds) Comprehensive Organic Synthesis, Pergamon Press, Oxford, vol 5, p 1037ff; c) Schore NE (1988) Chem Rev 88:1081; d) Pauson PL (1985) Tetrahedron 41:5855; e) Pauson PL (1987) In: de Meijere A, tom Dieck H (eds) Organometallics in Organic Chemistry. Springer, Berlin Heidelberg New York, vol 1, p 233; f) Krafft ME, Chirico X (1994) Tetrahedron Lett 35:4511; g) Oppolzer W, Robyr C (1994) Tetrahedron 50:415

    CAS  Google Scholar 

  50. a) Ager DJ, East MB (1993) Tetrahedron 49:5683; b) Vogel P, Fattori D, Gasparini F, Drian CL (1990) Synlett 173

    Article  CAS  Google Scholar 

  51. The central carbon atom in methylenecyclopropane is almost sp-hybridized, like that in allene; the carbon atoms in cyclopropane are almost sp 2-hybridized, cf de Meijere A (1979) Angew Chem 91:867 Angew Chem Int Ed Engl 18:809

    Article  Google Scholar 

  52. a) Vill V (1992) Mol Cryst Liq Cryst 213:67; b) Tabohasi T, Sakurai T, Higuchi R, Mikami N, Yamamoto E, Takeuchi K (1987) Eur Pat Appl EP 244, 129CA (1988) 108:P66076j; c) McGaffin G (1993) Dissertation, Universität Hamburg; d) Byron DJ, Matharu AS, Rees M, Wilson RC (1995) Mol Cryst Liq Cryst A258:217

    Article  CAS  Google Scholar 

  53. Tamm M (1997) Dissertation, Universität Göttingen

    Google Scholar 

  54. a) O’Donnell MJ, Polt RL (1982) J Org Chem 47:2663; b) O’Donnell MJ, Bennett WD, Polt RL (1985) Tetrahedron Lett 26:695; c) O’Donnell MJ, Falmagne J-B (1985) Tetrahedron Lett 26:699; d) O’Donnell MJ, Zhou C, Mi A, Chen N, Kyle JA, Andersson PG (1995) Tetrahedron Lett 36:4205; e) O’Donnell MJ, Yang X, Li M, Tetrahedron Lett (1990) 31:5135; f) O’Donnell MJ, Bennett WD (1988) Tetrahedron 44:5389; g) O’Donnell MJ, Zhou C, Chen N (1996) Tetrahedron: Asymmetry 7:621

    Article  CAS  Google Scholar 

  55. Review: Lipshutz BH, Sengupta S (1992) In: Paquette LA (ed) Org React, Wiley, New York, vol 41 p 135

    Google Scholar 

  56. Tamm M, Thutewohl M, Ricker CB, Bes MT, de Meijere A (1999) Eur J Org Chem:2017

    Google Scholar 

  57. Blandov A, de Meijere A (unpublished results)

    Google Scholar 

  58. Wessjohann L, McGaffin G, de Meijere A (1989) Synthesis 359

    Google Scholar 

  59. Es-Sayed M, Heiner T, de Meijere A (1993) Synlett 57

    Google Scholar 

  60. a) Wessjohann L, Skattebøl L, de Meijere A (1990) J Chem Soc Chem Commun: 574; b) Giller K, Baird MS, de Meijere A (1992) Synlett: 524

    Google Scholar 

  61. a) O’Donnell MJ, Wojciechowski K, Ghosez L, Navarro M, Sainte F, Antoine J-P (1984) Synthesis: 313; b) Stork G, Leong AYW, Touzin AM (1976) J Org Chem 41:3491

    Google Scholar 

  62. Es-Sayed M, Gratkowski C, Krass N, Meyers AI, de Meijere A (1992) Synlett: 962

    Google Scholar 

  63. a) Matsui S, Hashimoto Y, Saito K (1998) Synthesis: 1161; b) Badone D, Bernassau J-M, Cardamone R, Guzzi U (1996) Angew Chem 108:575 Angew Chem Int Ed Engl 35:535; c) Tamura O, Hashimoto M, Kobayashi Y, Katoh T, Nakatani K, Kamada M, Hayakawa I, Akiba T, Terashima S (1992) Tetrahedron Lett 33:3487; d) Newman MS, Kutner A (1951) J Am Chem Soc 73:4199; e) Stefanovsky JN, Spassov SL, Kurtev BJ, Balla M, Ötvös L (1969) Chem Ber 102:717. Other methods of preparation: f) Söderbaum HG (1896) Chem Ber 29:1210; g) Auerbach RA, Kingsbury CA (1971) Tetrahedron 27:2069; h) Hassner A, Burke SS (1974) Tetrahedron 30:2613; i) Okuda M, Tomioka K (1994) Tetrahedron Lett 35:4585; j) Foglia TA, Swern D (1969) J Org Chem 34:1680; k) Pirkle WH, Simmons KA (1983) J Org Chem 48:2520; l) Hoppe D, Follmann R (1976) Chem Ber 109:3047; m) Murthy KS, Keshava DDN (1984) J Heterocycl Chem 21:1721; n) Banks MR, Cadogan JIG, Gosney I, Hodgson PKG, Thomson DE (1991) J Chem Soc Perkin Trans 1:961; o) Murthy KS, Keshava DDN (1984) Synth Commun 14:687; p) Park, YS, Boys ML, Beak P(1996) J Am Chem Soc 118:3757

    Google Scholar 

  64. (S)-4-Phenyloxazolidine-2-one (98), (S)-4-phenyloxazolidine-2-thione (99) and (4R,5S)-4,5-diphenyloxazolidine-2-one (100) are very poor nucleophiles. A substoichiometric amount (10 mol%) of potassium hydride is necessary to generate a fraction of the potassium salt of 13 which has a sufficient nucleophilicity. This holds for the anions generated by deprotonation at the carbamate position and activation by addition of dibenzo-18-crown-6 to the reaction mixture, and causes the Michael addition to be very slow at −78 °C. The best temperature is −20 → 0 °C. The higher the temperature, the more decomposition product is formed during the Michael addition.

    Google Scholar 

  65. a) Duhamel L, Duhamel P, Launay JC, Plaquevent JC (1984) Bull Soc Chim Fr II: 421; b) Potin D, Williams K, Rebek Jr J (1990) Angew Chem 102:1485 Angew Chem Int Ed Engl 29:1420; c) Fehr C, Galindo J (1988) J Am Chem Soc 110:6909

    Google Scholar 

  66. For the analogous reactions which did not get any further development see also ref. [9]

    Google Scholar 

  67. a) Salaün J (1987) In: Rappoport Z (ed) The chemistry of the cyclopropyl group, Wiley, New York, p 809ff; b) Gajewsky JJ, Oberdier JP (1972) J Am Chem Soc 94:6053; c) Erden I, de Meijere A, Rousseau G, Conia JM (1980) Tetrahedron Lett 21:2501; d) Crandall JK, Conower WW (1978) J Org Chem 43:3533; e) Aue DH, Meshishneck MJ, Shellhamer DF (1973) Tetrahedron Lett 4799

    Google Scholar 

  68. a) Aue DH, Lorens RB, Helwig GS (1973) Tetrahedron Lett: 4795; b) Aue DH, Lorens RB, Helwig GS (1979) J Org Chem 44:1202; c) Crandall JK, Conover WW (1973) J Chem Soc Chem Commun 33; d) Crandall JK, Conover WW (1974) J Org Chem 39:63; e) Tsuge O, Ohnishi T, Watanabe H (1981) Heterocycles 16:2085; f) Tsuge O, Watanabe H (1976) Heterocycles 4:1905; g) Tsuge O, Watanabe H (1977) Heterocycles 7:709; h) Tsuge O, Watanabe H, Kiryu Y (1979) Bull Chem Soc Jpn 52:3387; i) Tlili T (1988) J Soc Chim Tunis 2:3

    Google Scholar 

  69. Dauban P, Dubois L, Dau METH, Dodd RH (1995) J Org Chem 60:2035; b) Tanner D (1994) Angew Chem 106:525 Angew Chem Int Ed Engl 33:599 and references cited therein; c) Goodman M (1994) Chemistry and Biology 231

    Article  CAS  Google Scholar 

  70. a) Amice P, Conia JM (1974) Bull Soc Chim Fr: 1015; b) Amice P, Conia JM (1974) Tetrahedron Lett: 479; c) Snider BB, Roush DM, Rodini DJ, Gonzalez D, Spindell D (1980) J Org Chem 45:2773; d) Ficini J, Krief A (1970) Tetrahedron Lett: 885; e) Ficini J, Dureault A (1977) Tetrahedron Lett 809

    Google Scholar 

  71. The ring enlargement of a cyclopropylmethylene to a cyclobutene is well known: a) Wiberg KB, Burgmaier GJ, Warner P (1971) J Am Chem Soc 93:246; b) de Meijere A, Wenck H, Kopf J (1988) Tetrahedron 44:2427; c) Ho G-J, Krogh-Jespersen K, Moss RA, Shen S, Sheridan RS, Subramanian R (1989) Am Chem Soc 111:6875

    Article  CAS  Google Scholar 

  72. Tamm M, Nötzel M, Noltemeyer M, de Meijere A (2000) J Org Chem (submitted)

    Google Scholar 

  73. Kuchuk I, de Meijere A (unpublished results)

    Google Scholar 

  74. Adachi T, Yamada Y, Inoue I (1977) Synthesis 45

    Google Scholar 

  75. a) Dürckheimer W, Blumbach J, Lattrell R, Scheunemann KH (1985) Angew Chem 97:183 Int Ed Engl 24:180; b) Bell MR, Carlson JA, Oesterlin R (1972) J Org Chem 37:2733; c) Jungheim LN, Sigmund SK, Jones ND, Swartzendruber JK, Lilly E (1987) Tetrahedron Lett 28:289; d) Campbell MM, Connarty BP (1982) Heterocycles 19:1853; e) Campbell MM, Carruthers NI, Mickel SJ, Winton PM (1984) J Chem Soc Chem Commun: 200; f) Barrett AGM, Cheng MC, Spilling CD, Taylor SJ (1989) J Org Chem 54:992

    Article  Google Scholar 

  76. a) Johnson G, Ross BC (1981) J Chem Soc Chem Commun 1269; b) Branch CL, Pearson MJ (1986) J Chem Soc Perkin Trans I: 1077

    Google Scholar 

  77. As for the biological activities of cyclopropane derivatives see: a) Salaün J, S. Baird MS (1995) Curr Med Chem 2:511; b) Salaün J (1999) Top Curr Chem, this volume

    Google Scholar 

  78. Hegedus LS, Montgomery J, Narukawa Y, Snustad DC (1991) J Am Chem Soc 113: 5784

    Article  CAS  Google Scholar 

  79. Kirmse W (1965) Angew Chem 77:1 Angew Chem Int Ed Engl 4:1

    Article  CAS  Google Scholar 

  80. Review: Korobitsyna IK, Khalikova AV, Rodina LL, Shusherina NP (1983) Khim Geterotsikl Soed 147 Chem Heterocycl Comp (Engl Transl) 117

    Google Scholar 

  81. Breslow R (1963) In: de Mayo P (ed) Molecular rearrangements. Wiley, New York p 233 ff

    Google Scholar 

  82. a) Govindan CK, Taylor G (1983) J Org Chem 48:5348; b) Wendling LA, Bergman RG (1976) J Org Chem 41:831; c) Rossi E, Celentano G, Stradi R, Strada A (1990) Tetrahedron Lett 31:903

    Article  CAS  Google Scholar 

  83. a) Boeckman RK Jr, Jackson PF, Sabatucci JP (1985) J Am Chem Soc 107:2191; b) Wasserman HH, Dion RP, Fukuyama J (1989) Tetrahedron 45:3203

    Article  CAS  Google Scholar 

  84. a) Málek J (1988) Org React 36:310; b) Hutchins RO, Su W-Y, Sivakumar R, Cistone F, Stercho YP (1983) J Org Chem 48:3412

    Google Scholar 

  85. a) Stevens RV (1977) Acc Chem Res 10:193; b) Boeckman RK Jr, Sabatucci JP, Goldstein SW, Springer DM, Jackson PF (1986) J Org Chem 51:3740; c) Wasserman HH, Fukuyama JM (1991) Tetrahedron Lett 32:7127; d) Maryanoff BE, McComsey DF, Mutter MS, Sorgi KL, Maryanoff CA (1988) Tetrahedron Lett 29:5073

    Article  CAS  Google Scholar 

  86. a) Cloke JB (1929) J Am Chem Soc 51:1174; b) Gotkis D, Cloke JB (1934) J Am Chem Soc 56:2710; c) Stevens RV, Ellis MC, Wentland MP (1968) J Am Chem Soc 90:5576

    Article  CAS  Google Scholar 

  87. Nötzel M (1999) Part of a forthcoming Dissertation, Universität Göttingen

    Google Scholar 

  88. a) Stacy GW, Day RI, Morath RJ (1955) J Am Chem Soc 77:3869; b) Stacy GW, Craig PA, DayRI (1958) J Org Chem 23:1760; c) Sandhu JS, Sethi PS, Mohan S (1971) J Indian Chem Soc 48:89

    Article  CAS  Google Scholar 

  89. Belov VN, Funke C, Labahn T, Es-Sayed M, de Meijere A (1999) Eur J Org Chem 1345

    Google Scholar 

  90. a) Robert M, Barbier M, Lederer E, Roux L, Biemann K, Vetter W (1962) Bull Soc Chim Fr 187; b) Hardegger E, Liechti P, Jackman LM, Boller A, Plattner PA (1963) Helv Chim Acta 46(1):60

    Google Scholar 

  91. a) Burrouhs LF (1957) Nature 179:360; b) Vähätalo M-L, Virtanen AI (1957) Acta Chem Scand 11:741

    Article  Google Scholar 

  92. a) Rosenthal GA (1982) Plant Nonproteinogenic Amino and Imino Acids. Biological and Toxicological Properties, Academic Press, New York; b) Barrett GC (1985) Chemistry and Biochemistry of the Amino Acids, Chapman and Hall, New York, p 64; c) Boller T, Kende H (1980) Nature 286:259; d) Pirrung MC (1987) J Org Chem 52:4179; d) Hill RK, Prakash SR, Wiesendanger R, Angst W, Martinoni B, Arigoni D, Liu H-W, Walsh CT (1984) J Am Chem Soc 106:795; e) Hoffman NE, Yang SF, Ichihara A, Sakamura S (1982) Plant Physiol 70:195

    Google Scholar 

  93. a) Pirrung MC, McGeehan GM (1985) Angew Chem 97:1074 Angew Chem Int Ed Engl 24:1044; b) Mitchel RE, Pirrung MC, McGeehan GM (1987) Phytochemistry 26:2695; c) Ichihara A, Shiraishi K, Sato H, Sakamura S, Nishiyama K, Sakai R, Furusaki A, Matsumoto T (1977) J Am Chem Soc 99:636; d) Bernabe M, Fernadez OC, Fernadez-Alvarez E (1979) Annales de Quimica 75:977; e) Harding WM, DeShazo ML (1967) Arch Biochem Biophys 118:23; f) Johnson RL, Koerner JF (1988) J Med Chem 31:2057; g) Pellicciari R, Natalini B, Marinozzi M, Monahan JB, Snyder JP (1990) Tetrahedron Lett 31:139; h) Stewart FHC (1981) Aust J Chem 34:2431; i) Tsang JW, Schmied B, Nyfeler R, Goodman M (1984) J Med Chem 27:1663; j) Pirrung MC, McGeehan GM (1986) J Org Chem 51:2103; k) Baldwin JE, Adlington RM, Rawlings BJ (1985) Tetrahedron Lett 26:481; l) Pirrung MC, Dunlap SE, Trinks UP (1989) Helv Chim Acta 72:1301; m) Aitken DJ, Royer J, Husson H-P (1990) J Org Chem 55:2814

    Article  CAS  Google Scholar 

  94. Stammer CH (1990) Tetrahedron 46:2231; b) Pirrung MC, Cao J, Chen J (1995) J Org Chem 60:5790; c) Burgess K, Lim D, Ho K-K, Ke C-Y (1994) J Org Chem 59:2179

    Article  CAS  Google Scholar 

  95. For several recent communications on this topic see: a) Zindel J, de Meijere A (1995) J Org Chem 60:2968; b) Burgess K, Ke C-Y (1996) Synthesis 1463; c) Hercouet A, Bessières B, Le Corre M (1996) Tetrahedron Asymmetry 7:1267; d) Franzone G, Carle S, Dorizon P, Ollivier J, Salaün J (1996) Synlett 1067; e) Hercouet A, Godbert N, Le Corre M (1998) Tetrahedron: Asymmetry 9:2233; f) Fadel A, Khesrani A (1998) Tetrahedron: Asymmetry 9:305; g) Chinchilla R, Falvello LR, Galindo N, Nájera C (1998) Tetrahedron:Asymmetry 9:2223; h) Atlan V, Racouchot S, Rubin M, Bremer C, Ollivier J, de Meijere A, Salaün J (1998) Tetrahedron: Asymmetry 9:1131

    Article  CAS  Google Scholar 

  96. a) Baldwin JE, Adlington RM, Bebbington D, Russell AT (1994) Tetrahedron 50:12015 and ref. [2] therein; b) Lai M-t, Liu M-d, Liu H-w (1991) J Am Chem Soc 113:7388; c) Lai M-t, Liu H-w (1992) J Am Chem Soc 114:3160; d) Kurokawa N, Ohfune Y (1985) Tetrahedron Lett 26:83; e) Li K, Du W, Que NLS, Liu H-w (1996) J Am Chem Soc 118:8763

    Article  CAS  Google Scholar 

  97. Shoji J-I, Sakazaki R, Kato T, Tori K, Yoshimura Y, Matsuura S (1981) J Antibiotics 34:370

    CAS  Google Scholar 

  98. Kato K, Takita T, Umezawa H (1980) Tetrahedron Lett 21:4925

    Article  CAS  Google Scholar 

  99. a) Evans DA, Britton TC (1987) J Am Chem Soc 109:6881; b) Evans DA, Ellman JA (1989) J Am Chem Soc 111:1063

    Article  CAS  Google Scholar 

  100. a) Aoyagi T, Yoshida S, Matsuda N, Ikeda T, Hamada M, Takeuchi T (1991) J Antibiotics 44:573; b) Angelastro MR, Mehdi S, Burkhart JP, Peet NP, Bey P (1990) J Med Chem 33:13

    CAS  Google Scholar 

  101. a) Bunnage ME, Davies SG, Goodwin CJ (1994) J Chem Soc Perkin Trans I: 2385; b) Wang Z-M, Kolb HC, Sharpless KB (1994) J Org Chem 59:5104

    Article  Google Scholar 

  102. a) Katayama N, Nozaki Y, Tsubotani S, Kondo M, Harada S, Ono H (1992) J Antibiotics 45:10; b) Funabashi T, Tsubotani S, Koyama K, Katayama N, Harada S (1993) Tetrahedron 49:13; c) Sokolov VV, Kozhushkov SI, Nikolskaya S, Belov VN, Es-Sayed M, de Meijere A (1998) Eur J Org Chem: 777

    CAS  Google Scholar 

  103. Manis PA, Rathke MW (1980) J Org Chem 45:4952

    Article  CAS  Google Scholar 

  104. a) Zindel J (1993) Dissertation, Universität Göttingen; b) Gutke H-J (1998) Dissertation, Universität Göttingen

    Google Scholar 

  105. Spitzner D, Engler A, Liese T, Splettstößer G, de Meijere A (1982) Angew Chem 94:799 Angew Chem Int Ed Engl 21:790

    Article  CAS  Google Scholar 

  106. Hadjiarapoglou L, de Meijere A, Seitz H-J, Klein I, Spitzner D (1994) Tetrahedron Lett 35:3269

    Article  CAS  Google Scholar 

  107. Hadjiarapoglou L, Klein I, Spitzner D, de Meijere A (1996) Synthesis 525

    Google Scholar 

  108. de Meijere A, Hadjiarapoglou LP, Noltemeyer M, Gutke H-J, Klein I, Spitzner D (1998) Eur J Org Chem 441

    Google Scholar 

  109. a) de Meijere A, Kozhushkov SI (1995) In: Halton B (ed) Advances in Strain in Organic Chemistry, JAI Press Ltd., London, vol 4, p 225ff; b) Zefirov NS, Kuznetsova TS, Zefirov AN (1995) Izv Akad Nauk Ser Khim 1613 Russian Chem Bull (Engl Trans) 44:1543

    Google Scholar 

  110. a) Hagiwara H, Kodama T, Kosugi H, Uda H (1976) J Chem Soc Chem Commun 413; b) Gröger C, Musso H (1976) Angew Chem 88:415 Angew Chem Int Ed Engl 15:373

    Google Scholar 

  111. Tsuji T, Kikuchi R, Nishida S (1985) Bull Chem Soc Jpn 58:1603

    Article  CAS  Google Scholar 

  112. a) Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) J Am Chem Soc 93:2325; b) Vidensek N, Lim P, Campell A, Carlson C (1990) J Nat Prod 53:1609; c) Witherup KM, Look SA, Stasko MW, Ghiorzi TJ, Muschik GM, Cragg GM (1990) J Nat Prod 53:1249

    Article  CAS  Google Scholar 

  113. a) Swindell CS (1991) Org Prep Procedures Int 23:465; b) Kingston DGI, Molinero AA, Rimoldi JM (1993) Prog Chem Org Nat Prod 61:1; c) Nicolaou KC, Dai W-M, Guy RK (1994) Angew Chem 106:38, Angew Chem Int Ed Engl 33:15; d) Boa AN, Jenkins PR, Lawrence NJ (1994) Contemporary Organic Synthesis 1:47

    CAS  Google Scholar 

  114. a) Holton RA, Somoza C, Kim H-B, Liang F, Biediger RJ, Boatman PD, Shindo M, Smith CC, Kim S, Nadizadeh H, Suzuki Y, Tao C, Vu P, Tang S, Zhang P, Murthi KK, Gentile LN, Liu JH (1994) J Am Chem Soc 116:1597; b) Holton RA, Kim H-B, Somoza C, Liang F, Biediger RJ, Boatman PD, Shindo M, Smith CC, Kim S, Nadizadeh H, Suzuki Y, Tao C, Vu P, Tang S, Zhang P, Murthi KK, Gentile LN, Liu JH (1994) J Am Chem Soc 116:1599; c) Nicolaou KC, Yang Z, Liu JJ, Ueno H, Nantermet PG, Guy RK, Claiborne CF, Renaud J, Couladouros EA, Paulvannan K, Sorensen EJ (1994) Nature 367:630

    Article  CAS  Google Scholar 

  115. a) Francisco C, Banaigs B, Teste J, Cave A (1986) J Org Chem 51:1115; b) Kakiuchi K, Fukunaga K, Matsuo F, Ohnishi Y, Tobe Y (1991) J Org Chem 56:6742

    Article  CAS  Google Scholar 

  116. a) Nagaoka H, Shibuya K, Yamada Y (1993) Tetrahedron Lett 34:1501; b) Nagaoka H, Baba A, Yamada Y (1991) Tetrahedron Lett 32:6741

    Article  Google Scholar 

  117. Wrobel J, Takahashi K, Honkan V, Lannoye G, Cook JM, Bertz SH (1983) J Org Chem 48:139

    Article  CAS  Google Scholar 

  118. a) Militzer H-C, Schömenauer S, Otte C, Puls C, Hain J, Bräse S, de Meijere A (1993) Synthesis 998; b) Padwa A, Wannamaker MW (1986) Tetrahedron Lett 27:2555

    Google Scholar 

  119. Gutke H-J, Spitzner D (1999) Tetrahedron 55:3193

    Article  Google Scholar 

  120. For reviews see a) Trost BM (1977) Tetrahedron 33:2615; b) Trost BM (1980) Acc Chem Res 13:385; c) Tsuji J (1980) Organic Synthesis with Palladium Compounds, Springer, Berlin; d) Tsuji J (1986) Tetrahedron 42:4361; e) Tsuji J, Minami I (1987) Acc Chem Res 20:140; f) Consiglio G, Waymouth RM (1989) Chem Rev 89:257; g) Trost BM (1978) Angew Chem 101:1199 Angew Chem Int Ed Engl 28:1173; h) Frost CG, Howarth J, Williams JMJ (1992) Tetrahedron: Asymmetry 3:1089; i) de Meijere A, Meyer FE (1994) Angew Chem 106:2473 Angew Chem Int Ed Engl 33:3279; j) Bräse S, de Meijere A (1998) In: Diederich F, Stang PJ (eds) Metal-catalyzed Cross-coupling Reactions, Wiley-VCH, Weinheim, p 99ff; k) de Meijere A, Bräse S (1991) J Organomet Chem 576:88

    Article  CAS  Google Scholar 

  121. a) Ang KH, Bräse S, Steinig AG, Meyer FE, Llebaria A, Voigt K, de Meijere A (1996) Tetrahedron 52:11503; b) Meyer FE, Ang KH, Steinig AG, de Meijere A (1994) Synlett 191

    Article  CAS  Google Scholar 

  122. Körbe S, de Meijere A (unpublished results)

    Google Scholar 

  123. Bhat A, Steinig A, Appelbe R, de Meijere A (2000) Eur J Org Chem (to be submitted)

    Google Scholar 

  124. a) Terrett NK, Gardener M, Gordon DW, Kobylecki RJ, Steele J (1995) Tetrahedron 51:8135; b) Balkenhohl F, Bussche-Hünnefeld C, Lansky A, Zechel C (1996) Angew Chem 108:2436 Angew Chem Int Ed Engl 35:2288; c) Nefzi A, Ostresh JM, Houghten RA (1997) Chem Rev 97:449; d) Szardenings AK, Burkoth TS, Lu HH, Tien DW, Campbell DA (1997) Tetrahedron 53:6573; e) Dömling A (1998) Comb Chem & High Troughput Screen 1:1

    Article  CAS  Google Scholar 

  125. Terrett NK (1998) Combinatorial Chemistry, Oxford University Press, Oxford

    Google Scholar 

  126. Khlebnikov AF, de Meijere A (unpublished results)

    Google Scholar 

  127. Hughes DL (1992) In: Paquette L (ed) Org React, Wiley, New York, vol 42, p 335

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Meijere, A., Kozhushkov, S.I., Hadjiarapoglou, L.P. (2000). Alkyl 2-Chloro-2-cyclopropylideneacetates—Remarkably Versatile Building Blocks for Organic Synthesis. In: de Meijere, A. (eds) Small Ring Compounds in Organic Synthesis VI. Topics in Current Chemistry, vol 207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48255-5_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-48255-5_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66471-0

  • Online ISBN: 978-3-540-48255-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation