CNO hydrogen burning studied deep underground

  • Conference paper
  • First Online:
The 2nd International Conference on Nuclear Physics in Astrophysics

Abstract

In stars, four hydrogen nuclei are converted into a helium nucleus in two competing nuclear fusion processes, namely the proton-proton chain (p-p chain)and the carbon-nitrogen-oxygen (CNO) cycle. For temperatures above 20 million kelvin, the CNO cycle dominates energy production, and its rate is determined by the slowest process, the 14N(p, γ)15O radiative capture reaction. This reaction proceeds through direct and resonant capture into the ground state and several excited states in 15O. High energy data for capture into each of these states can be extrapolated to stellar energies using an R-matrix fit. The results from several recent extrapolation studies are discussed. A new experiment at the LUNA (Laboratory for Underground Nuclear Astrophysics) 400 kV accelerator in Italy’s Gran Sasso laboratory measures the total cross section of the 14N(p, γ)15O reaction with a windowless gas target and a 4π BGO summing detector, down to center of mass energies as low as 70 keV. After reviewing the characteristics of the LUNA facility, the main features of this experiment are discussed, as well as astrophysical scenarios where cross section data in the energy range covered have a direct impact, without any extrapolation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C. Rolfs, W. Rodney, Cauldrons in the Cosmos (University of Chicago Press, Chicago, 1988).

    Google Scholar 

  2. H. Bethe, Phys. Rev. 55, 434 (1938).

    Article  ADS  Google Scholar 

  3. J.N. Bahcall, M.H. Pinsonneault, Phys. Rev. Lett. 92, 121301 (2004).

    Article  ADS  Google Scholar 

  4. C. Angulo et al., Nucl. Phys. A 656, 3 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Wiescher, J. Görres, H. Schatz, J. Phys. G 25, R133 (1999).

    Article  ADS  Google Scholar 

  6. D. Bemmerer, Experimental study of the 14N(p, γ)15O reaction at energies far below the Coulomb barrier, PhDThesis, Technische Universität Berlin (2004).

    Google Scholar 

  7. A. Lemut, Misura della sezione d’urto della reazione 14N(p, γ)15O ad energie di interesse astrofisico, PhD Thesis, Università degli Studi di Genova (2005).

    Google Scholar 

  8. L. Siess, M. Livio, J. Lattanzio, Astrophys. J. 570, 329 (2002).

    Article  ADS  Google Scholar 

  9. F. Herwig, S. M. Austin, Astrophys. J. 613, L73 (2004).

    Article  ADS  Google Scholar 

  10. J. José, M. Hernanz, Astrophys. J. 494, 680 (1998).

    Article  ADS  Google Scholar 

  11. J.N. Bahcall, A.M. Serenelli, S. Basu, Astrophys. J. 621, L85 (2005).

    Article  ADS  Google Scholar 

  12. L. Krauss, B. Chaboyer, Science 299, 65 (2003).

    Article  ADS  Google Scholar 

  13. G. Imbriani et al., Astron. Astrophys. 420, 625 (2004).

    Article  ADS  Google Scholar 

  14. E. Degl’Innocenti et al., Phys. Lett. B 590, 13 (2004).

    Article  ADS  Google Scholar 

  15. D.B. Duncan, J.E. Perry, Phys. Rev. 82, 809 (1951).

    Article  ADS  Google Scholar 

  16. W. Lamb, R. Hester, Phys. Rev. 108, 1304 (1957).

    Article  ADS  Google Scholar 

  17. R.E. Pixley, The reaction cross section of nitrogen 14 for protons between 220 keV and 600 keV, PhD Thesis, California Institute of Technology (1957).

    Google Scholar 

  18. B. Povh, D.F. Hebbard, Phys. Rev. 115, 608 (1959).

    Article  ADS  Google Scholar 

  19. D.F. Hebbard, G.M. Bailey, Nucl. Phys. 49, 666 (1963).

    Article  Google Scholar 

  20. U. Schröder et al., Nucl. Phys. A 467, 240 (1987).

    Article  ADS  Google Scholar 

  21. F. Ajzenberg-Selove, Nucl. Phys. A 523, 1 (1991).

    Article  ADS  Google Scholar 

  22. A. Formicola et al., Phys. Lett. B 591, 61 (2004).

    Article  ADS  Google Scholar 

  23. E. Adelberger et al., Rev. Mod. Phys. 70, 1265 (1998).

    Article  ADS  Google Scholar 

  24. C. Angulo, P. Descouvemont, Nucl. Phys. A 690, 755 (2001).

    Article  ADS  Google Scholar 

  25. P. Bertone et al., Phys. Rev. Lett. 87, 152501 (2003).

    Article  ADS  Google Scholar 

  26. P.F. Bertone et al., Phys. Rev. C 66, 055804 (2002).

    Article  ADS  Google Scholar 

  27. A. Mukhamedzhanov et al., Phys. Rev. C 67, 065804 (2003).

    Article  ADS  Google Scholar 

  28. K. Yamada et al., Phys. Lett. B 579, 265 (2004).

    Article  ADS  Google Scholar 

  29. R.C. Runkle et al., Phys. Rev. Lett. 94, 082503 (2005).

    Article  ADS  Google Scholar 

  30. A.M. Mukhamedzhanov, C.A. Gagliardi, R.E. Tribble, Phys. Rev. C 63, 024612 (2001).

    Article  ADS  Google Scholar 

  31. S.O. Nelson et al., Phys. Rev. C 68, 065804 (2003).

    Article  ADS  Google Scholar 

  32. S.P. Ahlen et al., Phys. Lett. B 249, 149 (1990).

    Article  ADS  Google Scholar 

  33. H. Wulandari et al., (2004), hep-ex/0401032.

    Google Scholar 

  34. H. Wulandari, J. Jochum, W. Rau, F. von Feilitzsch, Astropart. Phys. 22, 313 (2004).

    Article  ADS  Google Scholar 

  35. P. Belli et al., Nuovo Cimento A 101, 959 (1989).

    Article  ADS  Google Scholar 

  36. D. Bemmerer et al., Eur. Phys. J. A 24, 313 (2005).

    Article  ADS  Google Scholar 

  37. G. Müller et al., Nucl. Instrum. Methods A 295, 133 (1990).

    Article  ADS  Google Scholar 

  38. U. Greife et al., Nucl. Instrum. Methods A 350, 327 (1994).

    Article  ADS  Google Scholar 

  39. M. Junker et al., Phys. Rev. C 57, 2700 (1998).

    Article  ADS  Google Scholar 

  40. R. Bonetti et al., Phys. Rev. Lett. 82, 5205 (1999).

    Article  ADS  Google Scholar 

  41. C. Casella et al., Nucl. Instrum. Methods A 489, 160 (2002).

    Article  ADS  Google Scholar 

  42. C. Casella et al., Nucl. Phys. A 706, 203 (2002).

    Article  ADS  Google Scholar 

  43. A. Formicola et al., Nucl. Instrum. Methods A 507, 609 (2003).

    Article  ADS  Google Scholar 

  44. A. Formicola et al., Nucl. Phys. A 719, 94c (2003).

    Article  ADS  Google Scholar 

  45. A. Formicola, A new study of 14N(p, γ)15O at low energy, PhD Thesis, Ruhr-Universität Bochum (2004).

    Google Scholar 

  46. LUNA Collaboration, LNGS Annual Report, 159 (2003).

    Google Scholar 

  47. F. Confortola, Studio della reazione 14N(p, γ)15O ad energie di interesse astrofisico, Master’s Thesis, Università degli Studi di Genova (2003).

    Google Scholar 

  48. J. Görres et al., Nucl. Instrum. Methods 177, 295 (1980).

    Article  ADS  Google Scholar 

  49. J. Ziegler, SRIM version 2003.26, http://www.srim.org (2004).

  50. H. Costantini, Direct measurements of radiative capture reactions at astrophysical energies, PhD Thesis, Università degli Studi di Genova (2003).

    Google Scholar 

  51. I. Iben, A. Renzini, Annu. Rev. Astron. Astrophys. 21, 271 (1983).

    Article  ADS  Google Scholar 

  52. H. Fynbo et al., Nature 433, 136 (2005).

    Article  ADS  Google Scholar 

  53. I. Iben, Astrophys. J. 246, 278 (1981).

    Article  ADS  Google Scholar 

  54. A. Weiss, A. Serenelli, A. Kitsikis, H. Schlattl, J. Christensen-Dalsgaard, astro-ph/0503408 (2005).

    Google Scholar 

  55. A. Weiss, S. Cassisi, H. Schlattl, M. Salaris, Astrophys. J. 533, 413 (2000).

    Article  ADS  Google Scholar 

  56. C. Iliadis, A. Champagne, J. José, S. Starrfield, P. Tupper, Astrophys. J. Suppl. Ser. 142, 105 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Società Italiana di Fisica / Springer-Verlag

About this paper

Cite this paper

Bemmerer, D. et al. (2006). CNO hydrogen burning studied deep underground. In: Fülöp, Z., Gyürky, G., Somorjai, E. (eds) The 2nd International Conference on Nuclear Physics in Astrophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32843-2_24

Download citation

  • DOI: https://doi.org/10.1007/3-540-32843-2_24

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32842-1

  • Online ISBN: 978-3-540-32843-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics

Navigation