Principles of Checkpoint Inhibition in Malignant Lymphoma

  • Chapter
  • First Online:
Cancer Immunotherapy

Abstract

Malignancies manipulate the physiologic immune system through various immune checkpoint pathways to antagonize T cell activation and provide themselves an immune escape advantage. Targeting these inhibitory signals has been shown to be an effective approach to enhance the tumor-eradicating effect of the human immune system. Immune checkpoint inhibitors (ICIs) have emerged as a promising immunotherapy platform in several cancers. In lymphoma, pioneered in Hodgkin lymphoma (HL), inhibitors targeting program cell death-1 and its ligands have demonstrated excellent activity and have been incorporated into HL treatment paradigms. Despite excellent results in HL and some other lymphoma subtypes, the efficacy profile of ICIs in other lymphoma histologies has been modest and the implication of this lack of benefit remains to be explored. Moreover, despite initial responses, the response is not sustained in the majority of patients. The underlying reasons for the success or failure of ICI-based treatment are complicated and determined by several factors. Understanding the mechanisms of treatment failure and identifying predictive biomarkers will enable us to optimize immunotherapy in relapsing or non-responding patients. Lastly, many novel ICIs against different immune inhibitory axes are actively investigated in various settings, and hopefully these agents will overcome the limitations observed with the current ICIs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. La Gruta NL, Gras S, Daley SR, Thomas PG, Rossjohn J (2018) Understanding the drivers of MHC restriction of T cell receptors. Nat Rev Immunol 18(7):467–478. https://doi.org/10.1038/s41577-018-0007-5

    Article  Google Scholar 

  2. Chen L, Flies DB (2013) Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 13(4):227–242. https://doi.org/10.1038/nri3405

    Article  Google Scholar 

  3. Attanasio J, Wherry EJ (2016) Costimulatory and coinhibitory receptor pathways in infectious disease. Immunity 44(5):1052–1068. https://doi.org/10.1016/j.immuni.2016.04.022

    Article  Google Scholar 

  4. Schildberg FA, Klein SR, Freeman GJ, Sharpe AH (2016) Coinhibitory pathways in the B7-CD28 ligand-receptor family. Immunity 44(5):955–972. https://doi.org/10.1016/j.immuni.2016.05.002

    Article  Google Scholar 

  5. Patsoukis N, Wang Q, Strauss L, Boussiotis VA (2020) Revisiting the PD-1 pathway. Sci Adv 6(38):eabd2712. https://doi.org/10.1126/sciadv.abd2712

    Article  Google Scholar 

  6. Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704. https://doi.org/10.1146/annurev.immunol.26.021607.090331

    Article  Google Scholar 

  7. Diskin B, Adam S, Cassini MF, Sanchez G, Liria M, Aykut B, Buttar C, Li E, Sundberg B, Salas RD, Chen R, Wang J, Kim M, Farooq MS, Nguy S, Fedele C, Tang KH, Chen T, Wang W, Hundeyin M, Rossi JAK, Kurz E, Haq MIU, Karlen J, Kruger E, Sekendiz Z, Wu D, Shadaloey SAA, Baptiste G, Werba G, Selvaraj S, Loomis C, Wong KK, Leinwand J, Miller G (2020) PD-L1 engagement on T cells promotes self-tolerance and suppression of neighboring macrophages and effector T cells in cancer. Nat Immunol 21(4):442–454. https://doi.org/10.1038/s41590-020-0620-x

    Article  Google Scholar 

  8. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723. https://doi.org/10.1056/NEJMoa1003466

    Article  Google Scholar 

  9. Ansell SM, Hurvitz SA, Koenig PA, LaPlant BR, Kabat BF, Fernando D, Habermann TM, Inwards DJ, Verma M, Yamada R, Erlichman C, Lowy I, Timmerman JM (2009) Phase I study of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res 15(20):6446–6453. https://doi.org/10.1158/1078-0432.CCR-09-1339

    Article  Google Scholar 

  10. Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O’Donnell E, Chapuy B, Takeyama K, Neuberg D, Golub TR, Kutok JL, Shipp MA (2010) Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 116(17):3268–3277. https://doi.org/10.1182/blood-2010-05-282780

    Article  Google Scholar 

  11. Ansell SM, Minnema MC, Johnson P, Timmerman JM, Armand P, Shipp MA, Rodig SJ, Ligon AH, Roemer MGM, Reddy N, Cohen JB, Assouline S, Poon M, Sharma M, Kato K, Samakoglu S, Sumbul A, Grigg A (2019) Nivolumab for relapsed/refractory diffuse large B-cell lymphoma in patients ineligible for or having failed autologous transplantation: a single-arm, phase II study. J Clin Oncol 37(6):481–489. https://doi.org/10.1200/JCO.18.00766

    Article  Google Scholar 

  12. Roemer MG, Advani RH, Ligon AH, Natkunam Y, Redd RA, Homer H, Connelly CF, Sun HH, Daadi SE, Freeman GJ, Armand P, Chapuy B, de Jong D, Hoppe RT, Neuberg DS, Rodig SJ, Shipp MA (2016) PD-L1 and PD-L2 genetic alterations define classical Hodgkin lymphoma and predict outcome. J Clin Oncol 34(23):2690–2697. https://doi.org/10.1200/JCO.2016.66.4482

    Article  Google Scholar 

  13. Wang Y, Wenzl K, Manske MK, Asmann YW, Sarangi V, Greipp PT, Krull JE, Hartert K, He R, Feldman AL, Maurer MJ, Slager SL, Nowakowski GS, Habermann TM, Witzig TE, Link BK, Ansell SM, Cerhan JR, Novak AJ (2019) Amplification of 9p24.1 in diffuse large B-cell lymphoma identifies a unique subset of cases that resemble primary mediastinal large B-cell lymphoma. Blood Cancer J 9(9):73. https://doi.org/10.1038/s41408-019-0233-5

    Article  Google Scholar 

  14. Chen BJ, Chapuy B, Ouyang J, Sun HH, Roemer MG, Xu ML, Yu H, Fletcher CD, Freeman GJ, Shipp MA, Rodig SJ (2013) PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res 19(13):3462–3473. https://doi.org/10.1158/1078-0432.CCR-13-0855

    Article  Google Scholar 

  15. Bi X-W, Wang H, Zhang W-W, **a Z, Zhang Y-j, Wang L (2016) PD-L1 is up-regulated by EBV-driven LMP1 through NF-κb pathway and correlates with poor prognosis in natural killer/T-cell lymphoma. Blood 128(22):4134–4134. https://doi.org/10.1182/blood.V128.22.4134.4134

    Article  Google Scholar 

  16. Bai J, Gao Z, Li X, Dong L, Han W, Nie J (2017) Regulation of PD-1/PD-L1 pathway and resistance to PD-1/PDL1 blockade. Oncotarget 8(66):110693–110707

    Google Scholar 

  17. Chen R, Zinzani PL, Fanale MA, Armand P, Johnson NA, Brice P, Radford J, Ribrag V, Molin D, Vassilakopoulos TP, Tomita A, von Tresckow B, Shipp MA, Zhang Y, Ricart AD, Balakumaran A, Moskowitz CH, Keynote-087 (2017) Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J Clin Oncol 35(19):2125–2132. https://doi.org/10.1200/JCO.2016.72.1316

    Article  Google Scholar 

  18. Younes A, Santoro A, Shipp M, Zinzani PL, Timmerman JM, Ansell S, Armand P, Fanale M, Ratanatharathorn V, Kuruvilla J, Cohen JB, Collins G, Savage KJ, Trneny M, Kato K, Farsaci B, Parker SM, Rodig S, Roemer MGM, Ligon AH, Engert A (2016) Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol 17(9):1283–1294. https://doi.org/10.1016/S1470-2045(16)30167-X

    Article  Google Scholar 

  19. Crump M, Neelapu SS, Farooq U, Van Den Neste E, Kuruvilla J, Westin J, Link BK, Hay A, Cerhan JR, Zhu L, Boussetta S, Feng L, Maurer MJ, Navale L, Wiezorek J, Go WY, Gisselbrecht C (2017) Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood 130(16):1800–1808. https://doi.org/10.1182/blood-2017-03-769620

    Article  Google Scholar 

  20. Herrera AF, Chen L, Popplewell LL, Budde LE, Mei M, Armenian SH, Darrah J, Nikolaenko L, Chen RW, Peters L, Kennedy N, Rosen S, Forman SJ, Kwak LW (2019) Preliminary results from a phase I trial of pembrolizumab plus vorinostat in patients with relapsed or refractory diffuse large B-cell lymphoma, follicular lymphoma, and Hodgkin lymphoma. Blood 134(Supplement_1):759. https://doi.org/10.1182/blood-2019-123163

    Article  Google Scholar 

  21. Sethi T, Kovach AE, Mason EF, Chen H, Moyo T, Oluwole OO, Morgan D, Reddy N (2019) Combination of nivolumab, lenalidomide and rituximab in relapsed/refractory non-germinal center diffuse large B cell lymphoma: results from a dose-escalation cohort. Blood 134(Suppl_1):4100. https://doi.org/10.1182/blood-2019-129634

    Article  Google Scholar 

  22. Smith SD, Till BG, Shadman MS, Lynch RC, Cowan AJ, Wu QV, Voutsinas J, Rasmussen HA, Blue K, Ujjani CS, Shustov A, Cassaday RD, Fromm JR, Gopal AK (2020) Pembrolizumab with R-CHOP in previously untreated diffuse large B-cell lymphoma: potential for biomarker driven therapy. Br J Haematol 189(6):1119–1126. https://doi.org/10.1111/bjh.16494

    Article  Google Scholar 

  23. Frigault MJ, Armand P, Redd RA, Jeter E, Merryman RW, Coleman KC, Herrera AF, Dahi P, Nieto Y, LaCasce AS, Fisher DC, Ng SY, Odejide OO, Freedman AS, Kim AI, Crombie JL, Jacobson CA, Jacobsen ED, Wong JL, Bsat J, Patel SS, Ritz J, Rodig SJ, Shipp MA, Chen YB, Joyce RM (2020) PD-1 blockade for diffuse large B-cell lymphoma after autologous stem cell transplantation. Blood Adv 4(1):122–126. https://doi.org/10.1182/bloodadvances.2019000784

    Article  Google Scholar 

  24. Nayak L, Iwamoto FM, LaCasce A, Mukundan S, Roemer MGM, Chapuy B, Armand P, Rodig SJ, Shipp MA (2017) PD-1 blockade with nivolumab in relapsed/refractory primary central nervous system and testicular lymphoma. Blood 129(23):3071–3073. https://doi.org/10.1182/blood-2017-01-764209

    Article  Google Scholar 

  25. Lesokhin AM, Ansell SM, Armand P, Scott EC, Halwani A, Gutierrez M, Millenson MM, Cohen AD, Schuster SJ, Lebovic D, Dhodapkar M, Avigan D, Chapuy B, Ligon AH, Freeman GJ, Rodig SJ, Cattry D, Zhu L, Grosso JF, Bradley Garelik MB, Shipp MA, Borrello I, Timmerman J (2016) Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol 34(23):2698–2704. https://doi.org/10.1200/JCO.2015.65.9789

    Article  Google Scholar 

  26. Armand P, Janssens AMH, Gritti G, Radford J, Timmerman JM, Pinto A, Mercadal Vilchez S, Johnson PWM, Cunningham D, Leonard JP, Rodig SJ, Martín-Regueira P, Sumbul A, Samakoglu S, Tang H, Ansell SM (2020) Efficacy and safety results from CheckMate 140, a phase 2 study of nivolumab for relapsed/refractory follicular lymphoma. Blood. https://doi.org/10.1182/blood.2019004753%1blood.2019004753

  27. Barraclough A, Chong G, Gilbertson M, Grigg A, Churilov L, Fancourt T, Ritchie D, Koldej R, Agarwal R, Manos K, Smith C, Houdyk K, Hawking J, Hawkes E (2019) Immune priming with single-agent nivolumab followed by combined nivolumab & rituximab is safe and efficacious for first-line treatment of follicular lymphoma; interim analysis of the ‘1st FLOR’ study. Blood 134(Suppl_1):1523. https://doi.org/10.1182/blood-2019-123908

    Article  Google Scholar 

  28. Nastoupil LJ, Westin J, Fowler N, Fanale M, Samaniego F, Oki Y, Obi C, Cao J, Cheng X, Ma M, Wang Z, Chu F, Feng L, Zhou S, Davis RE, Neelapu SS (2017) High response rates with pembrolizumab in combination with rituximab in patients with relapsed follicular lymphoma: interim results of an on open-label, phase II study. Hematol Oncol 35(S2):120–121. https://doi.org/10.1002/hon.2437_108

    Article  Google Scholar 

  29. Grzywnowicz M, Karczmarczyk A, Skorka K, Zajac M, Zaleska J, Chocholska S, Tomczak W, Giannopoulos K (2015) Expression of programmed death 1 ligand in different compartments of chronic lymphocytic leukemia. Acta Haematol 134(4):255–262. https://doi.org/10.1159/000430980

    Article  Google Scholar 

  30. Ding W, LaPlant BR, Call TG, Parikh SA, Leis JF, He R, Shanafelt TD, Sinha S, Le-Rademacher J, Feldman AL, Habermann TM, Witzig TE, Wiseman GA, Lin Y, Asmus E, Nowakowski GS, Conte MJ, Bowen DA, Aitken CN, Van Dyke DL, Greipp PT, Liu X, Wu X, Zhang H, Secreto CR, Tian S, Braggio E, Wellik LE, Micallef I, Viswanatha DS, Yan H, Chanan-Khan AA, Kay NE, Dong H, Ansell SM (2017) Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood 129(26):3419–3427. https://doi.org/10.1182/blood-2017-02-765685

    Article  Google Scholar 

  31. Hanna BS, Yazdanparast H, Demerdash Y, Roessner PM, Schulz R, Lichter P, Stilgenbauer S, Seiffert M (2020) Combining ibrutinib and checkpoint blockade improves CD8+ T-cell function and control of chronic lymphocytic leukemia in Em-TCL1 mice. Haematologica. https://doi.org/10.3324/haematol.2019.238154

  32. Younes A, Brody J, Carpio C, Lopez-Guillermo A, Ben-Yehuda D, Ferhanoglu B, Nagler A, Ozcan M, Avivi I, Bosch F, Caballero Barrigon MD, Hellmann A, Kuss B, Ma DDF, Demirkan F, Yagci M, Horowitz NA, Marlton P, Cordoba R, Wrobel T, Buglio D, Streit M, Hodkinson BP, Schaffer M, Alvarez J, Ceulemans R, Balasubramanian S, de Jong J, Wang SS, Fourneau N, Jurczak W (2019) Safety and activity of ibrutinib in combination with nivolumab in patients with relapsed non-Hodgkin lymphoma or chronic lymphocytic leukaemia: a phase 1/2a study. Lancet Haematol 6(2):e67–e78. https://doi.org/10.1016/S2352-3026(18)30217-5

    Article  Google Scholar 

  33. Jain N, Ferrajoli A, Basu S, Thompson PA, Burger JA, Kadia TM, Estrov ZE, Pemmaraju N, Lopez W, Thakral B, Khoury JD, Bueso-Ramos CE, Blando J, O’Brien SM, Kantarjian HM, Allison JP, Keating MJ, Sharma P, Wierda WG (2018) A phase II trial of nivolumab combined with ibrutinib for patients with Richter transformation. Blood 132(Suppl 1):296. https://doi.org/10.1182/blood-2018-99-120355

    Article  Google Scholar 

  34. Ratner L, Waldmann TA, Janakiram M, Brammer JE (2018) Rapid progression of adult T-cell leukemia-lymphoma after PD-1 inhibitor therapy. N Engl J Med 378(20):1947–1948. https://doi.org/10.1056/NEJMc1803181

    Article  Google Scholar 

  35. Bennani NN, Pederson LD, Atherton P, Micallef I, Colgan JP, Thanarajasingam G, Nowakowski G, Witzig TE, Feldman AL, Ansell SM (2019) A phase II study of nivolumab in patients with relapsed or refractory peripheral T-cell lymphoma. Blood 134(Suppl_1):467. https://doi.org/10.1182/blood-2019-126194

    Article  Google Scholar 

  36. Khodadoust MS, Rook AH, Porcu P, Foss F, Moskowitz AJ, Shustov A, Shanbhag S, Sokol L, Fling SP, Ramchurren N, Pierce R, Davis A, Shine R, Li S, Fong S, Kim J, Yang Y, Blumenschein WM, Yearley JH, Das B, Patidar R, Datta V, Cantu E, McCutcheon JN, Karlovich C, Williams PM, Subrahmanyam PB, Maecker HT, Horwitz SM, Sharon E, Kohrt HE, Cheever MA, Kim YH (2020) Pembrolizumab in relapsed and refractory mycosis fungoides and sezary syndrome: a multicenter phase II study. J Clin Oncol 38(1):20–28. https://doi.org/10.1200/JCO.19.01056

    Article  Google Scholar 

  37. Armand P, Lesokhin A, Borrello I, Timmerman J, Gutierrez M, Zhu L, Popa McKiver M, Ansell SM (2020) A phase 1b study of dual PD-1 and CTLA-4 or KIR blockade in patients with relapsed/refractory lymphoid malignancies. Leukemia. https://doi.org/10.1038/s41375-020-0939-1

  38. Muhamad H, Suksawai N, Assanasen T, Polprasert C, Bunworasate U, Wudhikarn K (2020) Programmed cell death 1 and programmed cell death ligands in extranodal natural killer/T cell lymphoma: expression pattern and potential prognostic relevance. Acta Haematol 143(1):78–88. https://doi.org/10.1159/000500974

    Article  Google Scholar 

  39. Kim WY, Jung HY, Nam SJ, Kim TM, Heo DS, Kim CW, Jeon YK (2016) Expression of programmed cell death ligand 1 (PD-L1) in advanced stage EBV-associated extranodal NK/T cell lymphoma is associated with better prognosis. Virchows Arch 469(5):581–590. https://doi.org/10.1007/s00428-016-2011-0

    Article  Google Scholar 

  40. Kwong YL, Chan TSY, Tan D, Kim SJ, Poon LM, Mow B, Khong PL, Loong F, Au-Yeung R, Iqbal J, Phipps C, Tse E (2017) PD1 blockade with pembrolizumab is highly effective in relapsed or refractory NK/T-cell lymphoma failing l-asparaginase. Blood 129(17):2437–2442. https://doi.org/10.1182/blood-2016-12-756841

    Article  Google Scholar 

  41. Chan TSY, Li J, Loong F, Khong PL, Tse E, Kwong YL (2018) PD1 blockade with low-dose nivolumab in NK/T cell lymphoma failing L-asparaginase: efficacy and safety. Ann Hematol 97(1):193–196. https://doi.org/10.1007/s00277-017-3127-2

    Article  Google Scholar 

  42. Kim SJ, Lim JQ, Laurensia Y, Cho J, Yoon SE, Lee JY, Ryu KJ, Ko YH, Koh Y, Cho D, Lim ST, Beck Enemark M, D’Amore F, Bjerre M, Ong CK, Kim WS (2020) Avelumab for the treatment of relapsed or refractory extranodal NK/T-cell lymphoma: an open-label phase 2 study. Blood. https://doi.org/10.1182/blood.2020007247

  43. Tao R, Fan L, Song Y, Hu Y, Zhang W, Wang Y, Xu L, Zhou H, Li J (2019) Sintilimab for relapsed/refractory (r/r) extranodal NK/T-cell lymphoma (ENKTL): a multicenter, single-arm, phase 2 trial (ORIENT-4). J Clin Oncol 37(15_Suppl):7504. https://doi.org/10.1200/JCO.2019.37.15_suppl.7504

    Article  Google Scholar 

  44. Goodman AM, Piccioni D, Kato S, Boichard A, Wang HY, Frampton G, Lippman SM, Connelly C, Fabrizio D, Miller V, Sicklick JK, Kurzrock R (2018) Prevalence of PDL1 amplification and preliminary response to immune checkpoint blockade in solid tumors. JAMA Oncol 4(9):1237–1244. https://doi.org/10.1001/jamaoncol.2018.1701

    Article  Google Scholar 

  45. Roemer MGM, Redd RA, Cader FZ, Pak CJ, Abdelrahman S, Ouyang J, Sasse S, Younes A, Fanale M, Santoro A, Zinzani PL, Timmerman J, Collins GP, Ramchandren R, Cohen JB, De Boer JP, Kuruvilla J, Savage KJ, Trneny M, Ansell S, Kato K, Farsaci B, Sumbul A, Armand P, Neuberg DS, Pinkus GS, Ligon AH, Rodig SJ, Shipp MA (2018) Major histocompatibility complex class II and programmed death ligand 1 expression predict outcome after programmed death 1 blockade in classic Hodgkin lymphoma. J Clin Oncol 36(10):942–950. https://doi.org/10.1200/JCO.2017.77.3994

    Article  Google Scholar 

  46. Kline J, Godfrey J, Ansell SM (2020) The immune landscape and response to immune checkpoint blockade therapy in lymphoma. Blood 135(8):523–533. https://doi.org/10.1182/blood.2019000847

    Article  Google Scholar 

  47. Ugurel S, Schadendorf D, Horny K, Sucker A, Schramm S, Utikal J, Pfohler C, Herbst R, Schilling B, Blank C, Becker JC, Paschen A, Zimmer L, Livingstone E, Horn PA, Rebmann V (2020) Elevated baseline serum PD-1 or PD-L1 predicts poor outcome of PD-1 inhibition therapy in metastatic melanoma. Ann Oncol 31(1):144–152. https://doi.org/10.1016/j.annonc.2019.09.005

    Article  Google Scholar 

  48. Liang WS, Vergilio JA, Salhia B, Huang HJ, Oki Y, Garrido-Laguna I, Park H, Westin JR, Meric-Bernstam F, Fabrizio D, Miller VA, Stephens PJ, Fanale MA, Ross JS, Janku F (2019) Comprehensive genomic profiling of Hodgkin lymphoma reveals recurrently mutated genes and increased mutation burden. Oncologist 24(2):219–228. https://doi.org/10.1634/theoncologist.2018-0058

    Article  Google Scholar 

  49. Cader FZ, Hu X, Goh WL, Wienand K, Ouyang J, Mandato E, Redd R, Lawton LN, Chen PH, Weirather JL, Schackmann RCJ, Li B, Ma W, Armand P, Rodig SJ, Neuberg D, Liu XS, Shipp MA (2020) A peripheral immune signature of responsiveness to PD-1 blockade in patients with classical Hodgkin lymphoma. Nat Med 26(9):1468–1479. https://doi.org/10.1038/s41591-020-1006-1

    Article  Google Scholar 

  50. Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A, Wargo JA (2018) The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 33(4):570–580. https://doi.org/10.1016/j.ccell.2018.03.015

    Article  Google Scholar 

  51. Hwang SR, Higgins A, Castillo Almeida NE, LaPlant B, Maurer MJ, Ansell SM, Witzig TE, Thanarajasingam G, Bennani NN (2020) Effect of antibiotic use on outcomes in patients with Hodgkin lymphoma treated with immune checkpoint inhibitors. Leuk Lymphoma 62(1):247–251. https://doi.org/10.1080/10428194.2020.1827250

    Article  Google Scholar 

  52. Cortellini A, Bersanelli M, Buti S, Cannita K, Santini D, Perrone F, Giusti R, Tiseo M, Michiara M, Di Marino P, Tinari N, De Tursi M, Zoratto F, Veltri E, Marconcini R, Malorgio F, Russano M, Anesi C, Zeppola T, Filetti M, Marchetti P, Botticelli A, Antonini Cappellini GC, De Galitiis F, Vitale MG, Rastelli F, Pergolesi F, Berardi R, Rinaldi S, Tudini M, Silva RR, Pireddu A, Atzori F, Chiari R, Ricciuti B, De Giglio A, Iacono D, Gelibter A, Occhipinti MA, Parisi A, Porzio G, Fargnoli MC, Ascierto PA, Ficorella C, Natoli C (2019) A multicenter study of body mass index in cancer patients treated with anti-PD-1/PD-L1 immune checkpoint inhibitors: when overweight becomes favorable. J Immunother Cancer 7(1):57. https://doi.org/10.1186/s40425-019-0527-y

    Article  Google Scholar 

  53. Howard R, Kanetsky PA, Egan KM (2019) Exploring the prognostic value of the neutrophil-to-lymphocyte ratio in cancer. Sci Rep 9(1):19673. https://doi.org/10.1038/s41598-019-56218-z

    Article  Google Scholar 

  54. Grosso JF, Kelleher CC, Harris TJ, Maris CH, Hipkiss EL, De Marzo A, Anders R, Netto G, Getnet D, Bruno TC, Goldberg MV, Pardoll DM, Drake CG (2007) LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems. J Clin Invest 117(11):3383–3392. https://doi.org/10.1172/JCI31184

    Article  Google Scholar 

  55. Aoki T, Chong LC, Takata K, Milne K, Hav M, Colombo A, Chavez EA, Nissen M, Wang X, Miyata-Takata T, Lam V, Vigano E, Woolcock BW, Telenius A, Li MY, Healy S, Ghesquiere C, Kos D, Goodyear T, Veldman J, Zhang AW, Kim J, Saberi S, Ding J, Farinha P, Weng AP, Savage KJ, Scott DW, Krystal G, Nelson BH, Mottok A, Merchant A, Shah SP, Steidl C (2020) Single-cell transcriptome analysis reveals disease-defining T-cell subsets in the tumor microenvironment of classic Hodgkin lymphoma. Cancer Discov 10(3):406–421. https://doi.org/10.1158/2159-8290.CD-19-0680

    Article  Google Scholar 

  56. Wierz M, Pierson S, Guyonnet L, Viry E, Lequeux A, Oudin A, Niclou SP, Ollert M, Berchem G, Janji B, Guerin C, Paggetti J, Moussay E (2018) Dual PD1/LAG3 immune checkpoint blockade limits tumor development in a murine model of chronic lymphocytic leukemia. Blood 131(14):1617–1621. https://doi.org/10.1182/blood-2017-06-792267

    Article  Google Scholar 

  57. Yang ZZ, Grote DM, Ziesmer SC, Niki T, Hirashima M, Novak AJ, Witzig TE, Ansell SM (2012) IL-12 upregulates TIM-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma. J Clin Invest 122(4):1271–1282. https://doi.org/10.1172/JCI59806

    Article  Google Scholar 

  58. Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B, Tom I, Ivelja S, Refino CJ, Clark H, Eaton D, Grogan JL (2009) The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol 10(1):48–57. https://doi.org/10.1038/ni.1674

    Article  Google Scholar 

  59. Josefsson SE, Beiske K, Blaker YN, Forsund MS, Holte H, Ostenstad B, Kimby E, Koksal H, Walchli S, Bai B, Smeland EB, Levy R, Kolstad A, Huse K, Myklebust JH (2019) TIGIT and PD-1 mark intratumoral T cells with reduced effector function in B-cell non-Hodgkin lymphoma. Cancer Immunol Res 7(3):355–362. https://doi.org/10.1158/2326-6066.CIR-18-0351

    Article  Google Scholar 

  60. Yang ZZ, Kim HJ, Wu H, Jalali S, Tang X, Krull JE, Ding W, Novak AJ, Ansell SM (2020) TIGIT expression is associated with T-cell suppression and exhaustion and predicts clinical outcome and anti-PD-1 response in follicular lymphoma. Clin Cancer Res 26(19):5217–5231. https://doi.org/10.1158/1078-0432.CCR-20-0558

    Article  Google Scholar 

  61. Dixon KO, Schorer M, Nevin J, Etminan Y, Amoozgar Z, Kondo T, Kurtulus S, Kassam N, Sobel RA, Fukumura D, Jain RK, Anderson AC, Kuchroo VK, Joller N (2018) Functional anti-TIGIT antibodies regulate development of autoimmunity and antitumor immunity. J Immunol 200(8):3000–3007. https://doi.org/10.4049/jimmunol.1700407

    Article  Google Scholar 

  62. Harjunpaa H, Guillerey C (2020) TIGIT as an emerging immune checkpoint. Clin Exp Immunol 200(2):108–119. https://doi.org/10.1111/cei.13407

    Article  Google Scholar 

  63. Demaria O, Cornen S, Daeron M, Morel Y, Medzhitov R, Vivier E (2019) Harnessing innate immunity in cancer therapy. Nature 574(7776):45–56. https://doi.org/10.1038/s41586-019-1593-5

    Article  Google Scholar 

  64. Caux C, Ramos RN, Prendergast GC, Bendriss-Vermare N, Menetrier-Caux C (2016) A milestone review on how macrophages affect tumor growth. Cancer Res 76(22):6439–6442. https://doi.org/10.1158/0008-5472.CAN-16-2631

    Article  Google Scholar 

  65. Steidl C, Lee T, Shah SP, Farinha P, Han G, Nayar T, Delaney A, Jones SJ, Iqbal J, Weisenburger DD, Bast MA, Rosenwald A, Muller-Hermelink HK, Rimsza LM, Campo E, Delabie J, Braziel RM, Cook JR, Tubbs RR, Jaffe ES, Lenz G, Connors JM, Staudt LM, Chan WC, Gascoyne RD (2010) Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med 362(10):875–885. https://doi.org/10.1056/NEJMoa0905680

    Article  Google Scholar 

  66. Okazawa H, Motegi S, Ohyama N, Ohnishi H, Tomizawa T, Kaneko Y, Oldenborg PA, Ishikawa O, Matozaki T (2005) Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system. J Immunol 174(4):2004–2011. https://doi.org/10.4049/jimmunol.174.4.2004

    Article  Google Scholar 

  67. Chao MP, Alizadeh AA, Tang C, Myklebust JH, Varghese B, Gill S, Jan M, Cha AC, Chan CK, Tan BT, Park CY, Zhao F, Kohrt HE, Malumbres R, Briones J, Gascoyne RD, Lossos IS, Levy R, Weissman IL, Majeti R (2010) Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 142(5):699–713. https://doi.org/10.1016/j.cell.2010.07.044

    Article  Google Scholar 

  68. Eladl E, Tremblay-LeMay R, Rastgoo N, Musani R, Chen W, Liu A, Chang H (2020) Role of CD47 in hematological malignancies. J Hematol Oncol 13(1):96. https://doi.org/10.1186/s13045-020-00930-1

    Article  Google Scholar 

  69. Advani R, Flinn I, Popplewell L, Forero A, Bartlett NL, Ghosh N, Kline J, Roschewski M, LaCasce A, Collins GP, Tran T, Lynn J, Chen JY, Volkmer JP, Agoram B, Huang J, Majeti R, Weissman IL, Takimoto CH, Chao MP, Smith SM (2018) CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin’s lymphoma. N Engl J Med 379(18):1711–1721. https://doi.org/10.1056/NEJMoa1807315

    Article  Google Scholar 

  70. Johnson LDS, Banerjee S, Kruglov O, Viller NN, Horwitz SM, Lesokhin A, Zain J, Querfeld C, Chen R, Okada C, Sawas A, O’Connor OA, Sievers EL, Shou Y, Uger RA, Wong M, Akilov OE (2019) Targeting CD47 in sezary syndrome with SIRPalphaFc. Blood Adv 3(7):1145–1153. https://doi.org/10.1182/bloodadvances.2018030577

    Article  Google Scholar 

Download references

Acknowledgment

Kitsada Wudhikarn receives an education support grant from the King Chulalongkorn Memorial hospital, Thai Red Cross Society, Bangkok, Thailand.

Compliance with Ethical Standards

Disclosure of potential conflicts of interest: Kitsada Wudhikarn does not have any funding sources or conflicts of interest. Stephen M. Ansell receives research funding (to his institution) from Bristol Myers Squibb, Seattle Genetics, Regeneron, Trillium, AI Therapeutics and Affimed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Ansell .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wudhikarn, K., Ansell, S.M. (2022). Principles of Checkpoint Inhibition in Malignant Lymphoma. In: Cancer Immunotherapy. Springer, Cham. https://doi.org/10.1007/13905_2022_18

Download citation

  • DOI: https://doi.org/10.1007/13905_2022_18

  • Published:

  • Publisher Name: Springer, Cham

Publish with us

Policies and ethics

Navigation