Polymerization by Classical and Frustrated Lewis Pairs

  • Chapter
  • First Online:
Frustrated Lewis Pairs II

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 334))

  • 5285 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 245.03
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 320.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 320.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

α-AL:

α-Angelica lactone

γ-BL:

γ-Butyrolactone

γ-MMBL:

γ-Methyl-α-methylene-γ-butyrolactone

γ-VL:

γ-Valerolactone

ε-CL:

ε-Caprolactone

nBA:

n-Butyl acrylate

BHT:

Butylated hydroxytoluene

BINAP:

2,2′-Bis(diphenylphosphino)-1,1′-binaphthyl

CLP:

Classical Lewis pair

Cp:

η 5-Cyclopentadienyl

CP-1:

(S)-(−)-(1,1′-Binaphthalene-2,2′-diyl)bis(diphenylphosphine)

CP-2:

(−)-1,2-Bis[(2S,5S)-2,5-diisopropylphospholano]benzene

CP-3:

(S,S)-1,2-Bis[α-naphthyl(phenylphosphino)]ethane

CP-4:

(2S,3S)-(−)-2,3-Bis(diphenylphosphino)butane

DEVP:

Diethyl vinylphosphonate

DMAA:

N,N-Dimethylacrylamide

DMF:

N,N-Dimethylformamide

DPAA:

N,N-Diphenylacrylamide

EBI:

Ethylene bis(η 5-1-indenyl)

El:

Electrophile

FG:

Functional group

FLP:

Frustrated Lewis pair

Flu:

η 5- or η 3-Fluorenyl

FMA:

Furfuryl methacrylate

GPC:

Gel-permeation chromatography

IMes:

1,3-Bis(2,4,6-trimethylphenyl)imidazol-2-ylidene

It:

Isotactic (mm)

ItBu:

1,3-Di-tert-butylimidazol-2-ylidene

LA:

Lewis acid

LB:

Lewis base

LP:

Lewis pair

LPP:

Lewis pair polymerization

M:

Monomer

MAO:

Methylaluminoxane

MBL:

α-Methylene-γ-butyrolactone

Mes:

Mesityl (2,4,6-trimethylphenyl)

MMA:

Methyl methacrylate

M n (M w):

Number (weight) average molecular weight

MW:

Molecular weight

MWD:

Molecular weight distribution

NHC:

N-Heterocyclic carbene

Nu:

Nucleophile

P2-tBu:

1-tert-Butyl-2,2,4,4,4-pentakis(dimethylamino)-2λ5,4λ5-catenadi(phosphazene)

P4-tBu:

1-tert-Butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris(dimethylamino)-phosphoranylidenamino]-2λ5,4λ5-catenadi(phosphazene)

PDI:

Polydispersity index

PDMAA:

Poly(N,N-dimethylacrylamide)

PMMA:

Poly(methyl methacrylate)

RT:

Room temperature

St:

Syndiotactic (rr)

THF:

Tetrahydrofuran

TOF:

Turn-over frequency

TPT:

1,3,4-Triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene

TS:

Transition state

VT:

Variable temperature

References

  1. Zhang Y, Miyake GM, Chen EYX (2010) Alane-based classical and frustrated Lewis pairs in polymer synthesis: rapid polymerization of MMA and naturally renewable methylene butyrolactones to high molecular weight polymers. Angew Chem Int Ed 49:10158–10162

    Article  CAS  Google Scholar 

  2. Zhang Y, Miyake GM, John MG, Falivene L, Caporaso L, Cavallo L, Chen EYX (2012) Lewis pair polymerization by classical and frustrated Lewis pairs: acid, base and monomer scope and polymerization mechanism. Dalton Trans 41:9119–9134

    Article  CAS  Google Scholar 

  3. Stephan DW, Erker G (2010) Frustrated Lewis pairs: metal-free hydrogen activation and more. Angew Chem Int Ed 49:46–76

    Article  CAS  Google Scholar 

  4. Erker G (2011) Organometallic frustrated Lewis pair chemistry. Dalton Trans 40:7475–7483

    Article  CAS  Google Scholar 

  5. Stephan DW (2008) “Frustrated Lewis pairs”: a concept for new reactivity and catalysis. Org Biomol Chem 6:1535–1539

    Article  CAS  Google Scholar 

  6. McCahill JSJ, Welch GC, Stephan DW (2007) Reactivity of frustrated Lewis pairs: three-component reactions of phosphines, a borane, and olefins. Angew Chem Int Ed 46:4968–4971

    Article  CAS  Google Scholar 

  7. Johnston DS (1982) Macrozwitterionic polymerization. Adv Polym Sci 42:51–106

    Article  CAS  Google Scholar 

  8. Baskaran D, Müller AHE (2007) Anionic vinyl polymerization – 50 years after Michael Szwarc. Prog Polym Sci 32:173–219

    Article  CAS  Google Scholar 

  9. Baskaran D (2003) Strategic developments in living anionic polymerization of alkyl (meth)acrylates. Prog Polym Sci 38:521–581

    Article  Google Scholar 

  10. Chen EYX (2009) Coordination polymerization of polar vinyl monomers by single-site metal catalysts. Chem Rev 109:5157–5214

    Article  CAS  Google Scholar 

  11. Chen EYX, Mark TJ (2000) Cocatalyst for metal-catalyzed olefin polymerization: activators, activation processes, and structure-activity relationships. Chem Rev 100:1391–1434

    Article  CAS  Google Scholar 

  12. McCahill JSL, Welch GC, Stephan DW (2009) Sterically hindered phosphine and phosphonium-based activators and additives for olefin polymerization. Dalton Trans 8555–8561

    Google Scholar 

  13. Murahashi S, Nozakura SI, Hatada K, Takeuchi S, Aoki T (1960) Polymerizability of vinyl monomers with organometallic compounds. Sen-iken Nenpo 13:99–104

    Google Scholar 

  14. Ikeda M, Hirano T, Tsuruta T (1971) Organometallic compound with Lewis base. I. Polymerization of vinyl-compounds by organometallic compound/Lewis base complex. Makromol Chem 150:127–135

    Article  CAS  Google Scholar 

  15. Kitayama T, Masuda E, Yamaguchi M, Nishiura T, Hatada K (1992) Syndiotactic-specific polymerization of methacrylates by tertiary phosphine-triethylaluminum. Polym J 24:817–827

    Article  CAS  Google Scholar 

  16. Kitayama T, Lijima T, Nishiura T, Hatada K (1992) Highly efficient block copolymerization of methyl and t-butyl methacrylates by an incomplete and slow initiation system. Polym Bull 28:327–331

    Article  CAS  Google Scholar 

  17. Chen EYX (2012) Tris(pentafluorophenyl)alane. e-Encycl Reag Org Syn. doi: 10.1002/047084289X.rn01382

  18. Chen EYX, Kruper WJ, Roof GR, Wilson DR (2001) Double activation of constrained geometry and ansa-metallocene group 4 metal dialkyls: synthesis, structure, and olefin polymerization study of mono- and dicationic aluminate complexes. J Am Chem Soc 123:745–746

    Article  CAS  Google Scholar 

  19. Chen EYX, Abboud KA (2000) Unusual weakly coordinating anion reactivity in metallocene chemistry. Formation of tantalocene cation-dinuclear anion pairs. Organometallics 19:5541–5543

    Article  CAS  Google Scholar 

  20. Bolig AD, Chen EYX (2001) Reversal of polymerization stereoregulation in anionic polymerization of MMA by chiral metallocene and non-metallocene initiators: a new reaction pathway for metallocene-initiated MMA polymerization. J Am Chem Soc 123:7943–7944

    Article  CAS  Google Scholar 

  21. Chakraborty D, Chen EYX (2002) Neutral olefin polymerization activators as highly active catalysts for ROP of heterocyclic monomers and for polymerization of styrene. Macromolecules 35:13–15

    Article  CAS  Google Scholar 

  22. Hair GS, Cowley AH, Jones RA, McBurnett BG, Voigt A (1999) Arene complexes of Al(C6F5)3. Relationship to a déjà vu silylium ion. J Am Chem Soc 121:4922–4923

    Article  CAS  Google Scholar 

  23. Chen EYX (2009) Transformation of polymerization of polar vinyl monomers by discrete and hybrid metal catalysts. Dalton Trans 8784–8793

    Google Scholar 

  24. Sajid M, Stute A, Cardenas AJP, Culotta BJ, Hepperle JAM, Warren TH, Schirmer B, Grimme S, Studer A, Daniliuc CG, Fröhlich R, Petersen JL, Kehr G, Erker G (2012) N, N-Addition of frustrated Lewis pairs to nitric oxide: an easy entry to a unique family of aminoxyl radicals. J Am Chem Soc 134:10156–10168

    Article  CAS  Google Scholar 

  25. Biju AT, Padmanaban M, Wurz NE, Glorius F (2011) N-Heterocyclic carbene catalyzed umpolung of Michael acceptors for intermolecular reactions. Angew Chem Int Ed 50:8412–8415

    Article  CAS  Google Scholar 

  26. Matsuoka SI, Ota Y, Washio A, Katada A, Ichioka K, Takagi K, Suzuki M (2011) Organocatalytic tail-to-tail dimerization of olefin: umpolung of methyl methacrylate mediated by N-heterocyclic carbene. Org Lett 13:3722–3725

    Article  CAS  Google Scholar 

  27. Zhang Y, Chen EYX (2012) Conjugate-addition organopolymerization: rapid production of acrylic bioplastics by N-heterocyclic carbenes. Angew Chem Int Ed 51:2465–2469

    Article  CAS  Google Scholar 

  28. Ning Y, Cooney MJ, Chen EYX (2005) Polymerization of MMA by oscillating zirconocene catalysts, diastereomeric zirconocene mixtures, and diastereospecific metallocene pairs. J Organomet Chem 690:6263–6270

    Article  CAS  Google Scholar 

  29. Stojcevic G, Kim H, Taylor NJ, Marder TB, Collins S (2004) Methacrylate polymerization using a dinuclear zirconocene initiator: a new approach for the controlled synthesis of methacrylate polymers. Angew Chem Int Ed 43:5523–5526

    Article  CAS  Google Scholar 

  30. Zhang Y, Chen EYX (2008) Controlled polymerization of methacrylates to high molecular weight polymers using oxidatively activated group transfer polymerization initiators. Macromolecules 41:36–42

    Article  CAS  Google Scholar 

  31. Zhang Y, Chen EYX (2008) Structure–reactivity relationships in bimolecular-activated monomer polymerization of (meth)acrylates using oxidatively activated group 14 ketene acetals. Macromolecules 41:6353–6360

    Article  CAS  Google Scholar 

  32. Rodriguez-Delgado A, Chen EYX (2005) Single-site anionic polymerization. Monomeric ester enolaluminate propagator synthesis, molecular structure, and polymerization mechanism. J Am Chem Soc 127:961–974

    Article  CAS  Google Scholar 

  33. Iglesias-Sigüenza J, Alcarazo M (2012) Fullerenes as neutral carbon-based Lewis acids. Angew Chem Int Ed 51:2–4

    Article  Google Scholar 

  34. Li H, Risko C, Seo JH, Campbell C, Wu G, Brédas JJ, Bazan GC (2011) Fullerene–carbene Lewis acid–base adducts. J Am Chem Soc 133:12410–12413

    Article  CAS  Google Scholar 

  35. Ullrich M, Seto KSH, Lough AJ, Stephan DW (2009) 1,4-Addition reactions of frustrated Lewis pairs to 1,3-dienes. Chem Commun 23352337

    Google Scholar 

  36. Dureen MA, Stephan DW (2009) Terminal alkyne activation by frustrated and classical Lewis acid/phosphine pairs. J Am Chem Soc 131:8396–8397

    Article  CAS  Google Scholar 

  37. Xu BH, Kehr G, Fröhlich R, Wibbeling B, Schirmer B, Grimme S, Erker G (2011) Reaction of frustrated Lewis pairs with conjugated ynones-selective hydrogenation of the carbon-carbon triple bond. Angew Chem Int Ed 50:7183–7186

    Article  CAS  Google Scholar 

  38. Ning Y, Zhu H, Chen EYX (2007) Remarkable Lewis acid effects on polymerization of functionalized alkenes by metallocene and lithium ester enolates. J Organomet Chem 692:4535–4544

    Article  CAS  Google Scholar 

  39. Chase PA, Stephan DW (2008) Hydrogen and amine activation by a frustrated Lewis pair of a bulky N-heterocyclic carbene and B(C6F5)3. Angew Chem Int Ed 47:7433–7437

    Article  CAS  Google Scholar 

  40. Holschumacher D, Bannenberg T, Hrib CJ, Jones PG, Tamm M (2008) Heterolytic dihydrogen activation by a frustrated carbene-borane Lewis pair. Angew Chem Int Ed 47:7428–7432

    Article  CAS  Google Scholar 

  41. Timoshkin AY, Frenking G (2008) Gas-phase Lewis acidity of perfluoroaryl derivatives of group 13 elements. Organometallics 27:371–380

    Article  CAS  Google Scholar 

  42. Vanka K, Chan MSW, Pye CC, Ziegler T (2000) A density functional study of ion-pair formation and dissociation in the reaction between boron- and aluminum-based Lewis acids with (1,2-Me2Cp)2ZrMe2. Organometallics 19:1841–1849

    Article  CAS  Google Scholar 

  43. Chen EYX (2009) Ion-pairing polymerization. Comments Inorg Chem 30:7–27

    Article  Google Scholar 

  44. Chen EYX, Cooney MJ (2003) Amphicatalytic polymerization: synthesis of stereomultiblock poly(methyl methacrylate) with diastereospecific ion pairs. J Am Chem Soc 125:7150–7151

    Article  CAS  Google Scholar 

  45. Ning Y, Chen EYX (2006) Diastereospecific ion-pairing polymerization of functionalized alkenes by metallocene/Lewis acid hybrid catalysts. Macromolecules 39:7204–7215

    Article  CAS  Google Scholar 

  46. Spaether W, Klaß K, Erker G, Zippel F, Fröhlich R (1998) Formation of group 4 metallocene-enolate·B(C6F5)3 adducts and their role as initiators in the rapid polymerization of the functionalized olefin methyl vinyl ketone. Chem Eur J 4:1411–1417

    Article  CAS  Google Scholar 

  47. Zhang Y, Caporaso L, Cavallo L, Chen EYX (2011) Hydride-shuttling chain transfer and stereoregulation in methacrylate polymerization catalyzed by metallocenium enolate metallacycle–hydridoborate ion pairs. J Am Chem Soc 133:1572–1588

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study carried out at Colorado State University was supported by the National Science Foundation (CHE 1150792). The author thanks Prof. Tatsuki Kitayama for providing a copy of [13], which was an internal report written in Japanese and archived in the Macromolecular Department of Osaka University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Y.-X. Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, E.YX. (2012). Polymerization by Classical and Frustrated Lewis Pairs. In: Erker, G., Stephan, D. (eds) Frustrated Lewis Pairs II. Topics in Current Chemistry, vol 334. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2012_372

Download citation

Publish with us

Policies and ethics

Navigation