Main Technological Advancements in Bacterial Bioluminescent Biosensors Over the Last Two Decades

  • Chapter
  • First Online:
Bioluminescence: Fundamentals and Applications in Biotechnology - Volume 3

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 154))

Abstract

Environmental quality assessment is an extensive field of research due to the permanent increase of the stringency imposed by the legislative framework. To complete the wide panel of measurement methods, essentially based on physicochemical tools, some scientists focused on the development of alternative biological methods such as those based on the use of bioluminescent bacteria biosensors. The first report dedicated to the development of such biosensors dates back to 1967 and describes an analytical system designed to address the problem of air toxicity assessment. Nevertheless the available technologies in the photosensitive sensors field were not mature enough and, as a result, limited biosensor development possibilities. For about 20 years, the wide democratisation of photosensors coupled with advances in the genetic engineering field have allowed the expansion of the scope of possibilities of bioluminescent bacterial biosensors, allowing a significant emergence of these biotechnologies. This chapter retraces the history of the main technological evolutions that bacterial bioluminescent biosensors have known over the last two decades.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thevenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16:121–131

    Article  CAS  Google Scholar 

  2. Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6:206–212

    Article  CAS  Google Scholar 

  3. Strehler BL (1959) Some optical properties of luminous bacteria. Arch Biochem Biophys 85:391–408

    Article  CAS  Google Scholar 

  4. Serat WF, Budinger FE Jr, Mueller PK (1967) Toxicity evaluation of air pollutants by use of luminescent bacteria. Atmospheric Environ 1967(1):21–32

    Article  Google Scholar 

  5. Heitzer A, Malachowsky K, Thonnard JE, Bienkowski PR et al (1994) Optical biosensor for environmental on-line monitoring of naphthalene and salicylate bioavailability with an immobilized bioluminescent catabolic reporter bacterium. Appl Env Microbiol 60:1487–1494

    CAS  Google Scholar 

  6. Iams H, Salzberg B (1935) The secondary emission phototube. Proc Inst Radio Eng 23:55–64

    Google Scholar 

  7. Mölders H (1990) Methods for detecting the presence of mercury using microorganisms with mercury-enhanced bioluminescence

    Google Scholar 

  8. Bjerketorp J, Hakansson S, Belkin S, Jansson JK (2006) Advances in preservation methods: kee** biosensor microorganisms alive and active. Curr Opin Biotechnol 17:43–49

    Article  CAS  Google Scholar 

  9. Melamed S, Elad T, Belkin S (2012) Microbial sensor cell arrays. Curr Opin Biotechnol 23:2–8

    Article  CAS  Google Scholar 

  10. Wang X, Lu X, Chen J (2014) Development of biosensor technologies for analysis of environmental contaminants. Trends Environ Anal Chem 2:25–32

    Article  CAS  Google Scholar 

  11. Engstrom RW (1980) Photomultiplier handbook. RCA Corp

    Google Scholar 

  12. Iams HE, Salzberg B (1935) The secondary emission phototube. Proc IRE 23:55–64

    Article  Google Scholar 

  13. Zworykin VK, Morton GA, Malter L (1936) The secondary emission multiplier—a new electronic device. Proc Inst Radio Eng 24:351–375

    Google Scholar 

  14. Beijerinck MW (1889) Le Photobacterium luminosum, Bactérie lumineuse de la Mer du Nord. Arch Néerl Sci Exactes Nat 401–27

    Google Scholar 

  15. Carmi OA, Stewart GS, Ulitzur S, Kuhn J (1987) Use of bacterial luciferase to establish a promoter probe vehicle capable of nondestructive real-time analysis of gene expression in Bacillus spp. J Bacteriol 169:2165–2170

    CAS  Google Scholar 

  16. Polyak B, Bassis E, Novodvorets A, Belkin S et al (2001) Bioluminescent whole cell optical fiber sensor to genotoxicants: system optimization. Sens Actuators B Chem 74:18–26

    Article  CAS  Google Scholar 

  17. Ivask A, Green T, Polyak B, Mor A et al (2007) Fibre-optic bacterial biosensors and their application for the analysis of bioavailable Hg and As in soils and sediments from Aznalcollar mining area in Spain. Biosens Bioelectron 22:1396–1402

    Article  CAS  Google Scholar 

  18. Hakkila K, Green T, Leskinen P, Ivask A et al (2004) Detection of bioavailable heavy metals in EILATox-Oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibre-optic tips. J Appl Toxicol 24:333–342

    Article  CAS  Google Scholar 

  19. Cheol Gil G, Mitchell RJ, Tai Chang S, Bock Gu M (2000) A biosensor for the detection of gas toxicity using a recombinant bioluminescent bacterium. Biosens Bioelectron 15:23–30

    Google Scholar 

  20. Gu MB, Chang ST (2001) Soil biosensor for the detection of PAH toxicity using an immobilized recombinant bacterium and a biosurfactant. Biosens Bioelectron 16:667–674

    Article  CAS  Google Scholar 

  21. Chang ST, Lee HJ, Gu MB (2004) Enhancement in the sensitivity of an immobilized cell-based soil biosensor for monitoring PAH toxicity. Sens Actuators B Chem 97:272–276

    Article  CAS  Google Scholar 

  22. Yolcubal I, Piatt JJ, Pierce SA, Brusseau ML et al (2000) Fiber optic detection of in situ lux reporter gene activity in porous media: system design and performance. Anal Chim Acta 422:121–130

    Article  CAS  Google Scholar 

  23. Valdman E, Gutz IGR (2008) Bioluminescent sensor for naphthalene in air: cell immobilization and evaluation with a dynamic standard atmosphere generator. Sens Actuators B Chem 133:656–663

    Article  CAS  Google Scholar 

  24. Horry H, Charrier T, Durand MJ, Vrignaud B et al (2007) Technological conception of an optical biosensor with a disposable card for use with bioluminescent bacteria. Sens. Actuators B Chem 122:527–534

    Article  CAS  Google Scholar 

  25. Mendis S, Kemeny SE, Fossum ER (1994) CMOS active pixel image sensor. IEEE Trans Electron Devices 41:452–453

    Article  Google Scholar 

  26. Simpson ML, Sayler GS, Applegate BM, Ripp S et al (1998) Bioluminescent-bioreporter integrated circuits form novel whole-cell biosensors. Trends Biotechnol 16:332–338

    Article  CAS  Google Scholar 

  27. Lee JH, Mitchell RJ, Kim BC, Cullen DC et al (2005) A cell array biosensor for environmental toxicity analysis. Biosens Bioelectron 21:500–507

    Article  CAS  Google Scholar 

  28. Sakaguchi T, Morioka Y, Yamasaki M, Iwanaga J et al (2007) Rapid and onsite BOD sensing system using luminous bacterial cells-immobilized chip. Biosens Bioelectron 22:1345–1350

    Article  CAS  Google Scholar 

  29. Roda A, Cevenini L, Michelini E, Branchini BR (2011) A portable bioluminescence engineered cell-based biosensor for on-site applications. Biosens Bioelectron 26:3647–3653

    Article  CAS  Google Scholar 

  30. Charrier T, Chapeau C, Bendria L, Picart P et al (2011) A multi-channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity. Part II: technical development and proof of concept of the biosensor. Anal Bioanal Chem 400:1061–1070

    Article  CAS  Google Scholar 

  31. Tani H, Maehana K, Kamidate T (2004) Chip-based bioassay using bacterial sensor strains immobilized in three-dimensional microfluidic network. Anal Chem 76:6693–6697

    Article  CAS  Google Scholar 

  32. Jouanneau S, Durand MJ, Thouand G (2012) Online detection of metals in environmental samples: comparing two concepts of bioluminescent bacterial biosensors. Environ Sci Technol 46:11979–11987

    Article  CAS  Google Scholar 

  33. Affi M, Solliec C, Legentillomme P, Comiti J et al (2009) Numerical design of a card and related physicochemical phenomena occurring inside agarose-immobilized bacteria: A valuable tool for increasing our knowledge of biosensors. Sens Actuators B Chem 138:310–317

    Article  CAS  Google Scholar 

  34. Gu MB, Dhurjati PS, Van Dyk TK, LaRossa RA (1996) A miniature bioreactor for sensing toxicity using recombinant bioluminescent escherichia coli cells. Biotechnol Prog 12:393–397

    Article  CAS  Google Scholar 

  35. Gu MB, Gil GC, Kim JH (1999) A two-stage minibioreactor system for continuous toxicity monitoring. Biosens Bioelectron 14:355–361

    Article  CAS  Google Scholar 

  36. Gu BM, Gil CG (2001) A multi-channel continuous toxicity monitoring system using recombinant bioluminescent bacteria for classification of toxicity. Biosens Bioelectron 16:661–666

    Article  CAS  Google Scholar 

  37. Lee JH, Gu MB (2005) An integrated mini biosensor system for continuous water toxicity monitoring. Biosens Bioelectron 20:1744–1749

    Article  CAS  Google Scholar 

  38. Horry H, Durand M-J, Picart P, Bendriaa L et al (2004) Development of a biosensor for the detection of tributyltin. Environ Toxicol 19:342–345

    Article  CAS  Google Scholar 

  39. Ikariyama Y, Nishiguchi S, Koyama T, Kobatake E et al (1997) Fiber-optic-based biomonitoring of benzene derivatives by recombinant E. coli bearing luciferase gene-fused TOL-plasmid immobilized on the fiber-optic end. Anal Chem 69:2600–2605

    Article  CAS  Google Scholar 

  40. Rabner A, Belkin S, Rozen R, Shacham Y (2006) Whole-cell luminescence biosensor-based lab-on-chip integrated system for water toxicity analysis. In: Proceedings of SPIE 6112, Microfluidics, BioMEMS, and medical microsystems vol IV, pp 611205–10

    Google Scholar 

  41. Choi SH, Gu MB (2002) A portable toxicity biosensor using freeze-dried recombinant bioluminescent bacteria. Biosens Bioelectron 17:433–440

    Article  CAS  Google Scholar 

  42. Cho J-C, Park K-J, Ihm H-S, Park J-E et al (2004) A novel continuous toxicity test system using a luminously modified freshwater bacterium. Biosens. Bioelectron 20:338–344 (special issue honour Profr. Pierre Coulet)

    Article  CAS  Google Scholar 

  43. Yagur-Kroll S, Schreuder E, Ingham CJ, Heideman R et al (2015) A miniature porous aluminum oxide-based flow-cell for online water quality monitoring using bacterial sensor cells. Biosens Bioelectron 64:625–632

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jouanneau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jouanneau, S., Durand, M.J., Lahmar, A., Thouand, G. (2015). Main Technological Advancements in Bacterial Bioluminescent Biosensors Over the Last Two Decades. In: Thouand, G., Marks, R. (eds) Bioluminescence: Fundamentals and Applications in Biotechnology - Volume 3. Advances in Biochemical Engineering/Biotechnology, vol 154. Springer, Cham. https://doi.org/10.1007/10_2015_333

Download citation

Publish with us

Policies and ethics

Navigation