RNA Interference in Haematopoietic and Leukaemic Cells

  • Chapter
Systems Biology

Part of the book series: Cell Engineering ((CEEN,volume 5))

  • 1525 Accesses

Abstract

The haematopoietic system is currently the best characterized mammalian differentiation system. On the one hand, pathologic disturbance of the differentiation programmes results in the development of haemopoietic malignancies such as leukaemias and lymphomas. On the other hand, systematic interference with haemopoietic differentiation is a prerequisite for ex vivo expansion of stem and progenitor cells during, for instance, stem cell transplantation. RNA interference (RNAi) provides exciting options for the molecular dissection of processes relevant for stem cell maintenance and leukaemogenesis. However, in comparison to most adhesive cell types, haematopoietic cells require special techniques for the successful application of RNAi, particularly for the delivery of RNAi-triggering molecules. Nevertheless, RNAi has not only been proven to enable functional analysis of haemopoietic processes, but may also contribute to the therapy of haemopoietic malignancies

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (Brazil)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Orkin, S. H. (2000) Diversification of haematopoietic stem cells to specific lineages. Nat Rev Genet 1, 57–64.

    Article  PubMed  CAS  Google Scholar 

  2. Passegue, E., Jamieson, C. H., Ailles, L. E. & Weissman, I. L. (2003) Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci U S A 100, 11842–9.

    Article  PubMed  CAS  Google Scholar 

  3. Look, A. T. (1997) Oncogenic transcription factors in the human acute leukemias. Science 278, 1059–64.

    Article  PubMed  CAS  Google Scholar 

  4. Pardanani, A. & Tefferi, A. (2004) Imatinib targets other than bcr/abl and their clinical relevance in myeloid disorders. Blood 104, 1931–9.

    Article  PubMed  CAS  Google Scholar 

  5. Sledz, C. A. & Williams, B. R. (2005) RNA interference in biology and disease. Blood 106, 787–94.

    Article  PubMed  CAS  Google Scholar 

  6. Scherr, M., Morgan, M. A. & Eder, M. (2003) Gene silencing mediated by small interfering RNAs in mammalian cells. Curr Med Chem 10, 245–56.

    PubMed  CAS  Google Scholar 

  7. Borkhardt, A. & Heidenreich, O. (2004) RNA interference as a potential tool in the treatment of leukaemia. Expert Opin Biol Ther 4, 1921–9.

    Article  PubMed  CAS  Google Scholar 

  8. Fire, A. et al. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–11.

    Article  PubMed  CAS  Google Scholar 

  9. Martinez, J. & Tuschl, T. (2004) RISC is a 5′ phosphomonoester-producing RNA endonuclease. Genes Dev 18, 975–80.

    Article  PubMed  CAS  Google Scholar 

  10. Jaronczyk, K., Carmichael, J. B. & Hobman, T. C. (2005) Exploring the functions of RNA interference pathway proteins: some functions are more RISCy than others? Biochem J 387, 561–71.

    Article  PubMed  CAS  Google Scholar 

  11. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–6.

    Article  PubMed  CAS  Google Scholar 

  12. Macrae, I. J. et al. (2006) Structural basis for double-stranded RNA processing by Dicer. Science 311, 195–8.

    Article  PubMed  CAS  Google Scholar 

  13. Chendrimada, T. P. et al. (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740–4.

    Article  PubMed  CAS  Google Scholar 

  14. Haase, A. D. et al. (2005) TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep 6, 961–7.

    Article  PubMed  CAS  Google Scholar 

  15. Hammond, S. M., Bernstein, E., Beach, D. & Hannon, G. J. (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–6.

    Article  PubMed  CAS  Google Scholar 

  16. Meister, G. et al. (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15, 185–97.

    Article  PubMed  CAS  Google Scholar 

  17. Filipowicz, W. (2005) RNAi: the nuts and bolts of the RISC machine. Cell 122, 17–20.

    Article  PubMed  CAS  Google Scholar 

  18. Pasquinelli, A. E. et al. (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–9.

    Article  PubMed  CAS  Google Scholar 

  19. Calin, G. A. et al. (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101, 2999–3004.

    Article  PubMed  CAS  Google Scholar 

  20. Lee, Y. et al. (2004) MicroRNA genes are transcribed by RNA polymerase II. Embo J 23, 4051–60.

    Article  PubMed  CAS  Google Scholar 

  21. Cai, X., Hagedorn, C. H. & Cullen, B. R. (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. Rna 10, 1957–66.

    Article  PubMed  CAS  Google Scholar 

  22. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. (2001) Identification of novel genes coding for small expressed RNAs. Science 294, 853–8.

    Article  PubMed  CAS  Google Scholar 

  23. Yi, R., Qin, Y., Macara, I. G. & Cullen, B. R. (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17, 3011–6.

    Article  PubMed  CAS  Google Scholar 

  24. Hutvagner, G. et al. (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–8.

    Article  PubMed  CAS  Google Scholar 

  25. Hutvagner, G. & Zamore, P. D. (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–60.

    Article  PubMed  CAS  Google Scholar 

  26. Gregory, R. I., Chendrimada, T. P., Cooch, N. & Shiekhattar, R. (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123, 631–40.

    Article  PubMed  CAS  Google Scholar 

  27. Liu, J., Valencia-Sanchez, M. A., Hannon, G. J. & Parker, R. (2005) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7, 719–23.

    Article  PubMed  CAS  Google Scholar 

  28. Yekta, S., Shih, I. H. & Bartel, D. P. (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–6.

    Article  PubMed  CAS  Google Scholar 

  29. Humphreys, D. T., Westman, B. J., Martin, D. I. & Preiss, T. (2005) MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci U S A 102, 16961–6.

    Article  PubMed  CAS  Google Scholar 

  30. Chen, C. Z., Li, L., Lodish, H. F. & Bartel, D. P. (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83–6.

    Article  PubMed  CAS  Google Scholar 

  31. Calin, G. A. et al. (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353, 1793–801.

    Article  PubMed  CAS  Google Scholar 

  32. Eder, M. & Scherr, M. (2005) MicroRNA and lung cancer. N Engl J Med 352, 2446–8.

    Article  PubMed  CAS  Google Scholar 

  33. Elbashir, S. M., Lendeckel, W. & Tuschl, T. (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15, 188–200.

    Article  PubMed  CAS  Google Scholar 

  34. Khvorova, A., Reynolds, A. & Jayasena, S. D. (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–16.

    Article  PubMed  CAS  Google Scholar 

  35. Reynolds, A. et al. (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22, 326–30.

    Article  PubMed  CAS  Google Scholar 

  36. Kretschmer-Kazemi Far, R. & Sczakiel, G. (2003) The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides. Nucleic Acids Res 31, 4417–24.

    Article  PubMed  CAS  Google Scholar 

  37. Luo, K. Q. & Chang, D. C. (2004) The gene-silencing efficiency of siRNA is strongly dependent on the local structure of mRNA at the targeted region. Biochem Biophys Res Commun 318, 303–10.

    Article  PubMed  CAS  Google Scholar 

  38. Patzel, V. et al. (2005) Design of siRNAs producing unstructured guide-RNAs results in improved RNA interference efficiency. Nat Biotechnol 23, 1440–4.

    Article  PubMed  CAS  Google Scholar 

  39. Thomas, M. et al. (2005) Targeting MLL-AF4 with short interfering RNAs inhibits clonogenicity and engraftment of t(4;11)-positive human leukemic cells. Blood 106, 3559–3566.

    Article  PubMed  CAS  Google Scholar 

  40. Yang, D. et al. (2002) Short RNA duplexes produced by hydrolysis with Escherichia coli RNase III mediate effective RNA interference in mammalian cells. Proc Natl Acad Sci U S A 99, 9942–7.

    Article  PubMed  CAS  Google Scholar 

  41. Kawasaki, H., Suyama, E., Iyo, M. & Taira, K. (2003) siRNAs generated by recombinant human Dicer induce specific and significant but target site-independent gene silencing in human cells. Nucleic Acids Res 31, 981–7.

    Article  PubMed  CAS  Google Scholar 

  42. Semizarov, D. et al. (2003) Specificity of short interfering RNA determined through gene expression signatures. Proc Natl Acad Sci U S A 100, 6347–52.

    Article  PubMed  CAS  Google Scholar 

  43. Chi, J. T. et al. (2003) Genomewide view of gene silencing by small interfering RNAs. Proc Natl Acad Sci U S A 100, 6343–6.

    Article  PubMed  CAS  Google Scholar 

  44. Martinez, L. A. et al. (2002) Synthetic small inhibiting RNAs: efficient tools to inactivate oncogenic mutations and restore p53 pathways. Proc Natl Acad Sci U S A 99, 14849–54.

    Article  PubMed  CAS  Google Scholar 

  45. Jackson, A. L. et al. (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21, 635–7.

    Article  PubMed  CAS  Google Scholar 

  46. Lin, X. et al. (2005) siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res 33, 4527–35.

    Article  PubMed  CAS  Google Scholar 

  47. Saxena, S., Jonsson, Z. O. & Dutta, A. (2003) Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells. J Biol Chem 278, 44312–9.

    Article  PubMed  CAS  Google Scholar 

  48. Scacheri, P. C. et al. (2004) Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci U S A 101, 1892–7.

    Article  PubMed  CAS  Google Scholar 

  49. Qiu, S., Adema, C. M. & Lane, T. (2005) A computational study of off-target effects of RNA interference. Nucleic Acids Res 33, 1834–47.

    Article  PubMed  CAS  Google Scholar 

  50. Holen, T. et al. (2005) Tolerated wobble mutations in siRNAs decrease specificity, but can enhance activity in vivo. Nucleic Acids Res 33, 4704–10.

    Article  PubMed  CAS  Google Scholar 

  51. Du, Q., Thonberg, H., Wang, J., Wahlestedt, C. & Liang, Z. (2005) A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites. Nucleic Acids Res 33, 1671–7.

    Article  PubMed  CAS  Google Scholar 

  52. Elbashir, S. M. et al. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–8.

    Article  PubMed  CAS  Google Scholar 

  53. Bridge, A. J., Pebernard, S., Ducraux, A., Nicoulaz, A. L. & Iggo, R. (2003) Induction of an interferon response by RNAi vectors in mammalian cells. Nat Genet 34, 263–264.

    Article  PubMed  CAS  Google Scholar 

  54. Sledz, C. A., Holko, M., de Veer, M. J., Silverman, R. H. & Williams, B. R. (2003) Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 5, 834–9.

    Article  PubMed  CAS  Google Scholar 

  55. Kim, D. H. et al. (2004) Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nat Biotechnol 22, 321–5.

    Article  PubMed  CAS  Google Scholar 

  56. Hormes, R. et al. (1997) The subcellular localization and length of hammerhead ribozymes determine efficacy in human cells. Nucleic Acids Res. 25, 769–775.

    Article  PubMed  CAS  Google Scholar 

  57. Judge, A. D. et al. (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 23, 457–62.

    Article  PubMed  CAS  Google Scholar 

  58. Heidel, J. D., Hu, S., Liu, X. F., Triche, T. J. & Davis, M. E. (2004) Lack of interferon response in animals to naked siRNAs. Nat Biotechnol 22, 1579–82.

    Article  PubMed  CAS  Google Scholar 

  59. Kittler, R. et al. (2005) RNA interference rescue by bacterial artificial chromosome transgenesis in mammalian tissue culture cells. Proc Natl Acad Sci U S A 102, 2396–401.

    Article  PubMed  CAS  Google Scholar 

  60. Wianny, F. & Zernicka-Goetz, M. (2000) Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol 2, 70–5.

    Article  PubMed  CAS  Google Scholar 

  61. Kasashima, K., Sakota, E. & Kozu, T. (2004) Discrimination of target by siRNA: designing of AML1-MTG8 fusion mRNA-specific siRNA sequences. Biochimie 86, 713–21.

    Article  PubMed  CAS  Google Scholar 

  62. John, M., Geick, A., Hadwiger, P., Vornlocher, H. P. & Heidenreich, O. in Current protocols in molecular biology (eds. Ausubel, F. M. et al.) 26.2.1–26.2.14 (John Wiley & Sons, New York, 2003).

    Google Scholar 

  63. Heidenreich, O. et al. (2003) AML1/MTG8 oncogene suppression by small interfering RNAs supports myeloid differentiation of t(8;21)-positive leukemic cells. Blood 101, 3157–63.

    Article  PubMed  CAS  Google Scholar 

  64. Scherr, M. et al. (2003) Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood 101, 1566–1569.

    Article  PubMed  CAS  Google Scholar 

  65. Ptasznik, A., Nakata, Y., Kalota, A., Emerson, S. G. & Gewirtz, A. M. (2004) Short interfering RNA (siRNA) targeting the Lyn kinase induces apoptosis in primary, and drug-resistant, BCR-ABL1(+) leukemia cells. Nat Med 10, 1187–9.

    Article  PubMed  CAS  Google Scholar 

  66. Bartlett, D. W. & Davis, M. E. (2006) Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res 34, 322–33.

    Article  PubMed  CAS  Google Scholar 

  67. Tuschl, T. (2002) Expanding small RNA interference. Nat Biotechnol 20, 446–8.

    Article  PubMed  CAS  Google Scholar 

  68. Scherr, M., Battmer, K., Schultheis, B., Ganser, A. & Eder, M. (2005) Stable RNA interference (RNAi) as an option for anti-bcr-abl therapy. Gene Ther 12, 12–21.

    Article  PubMed  CAS  Google Scholar 

  69. Lin, X. et al. (2004) Development of a tightly regulated U6 promoter for shRNA expression. FEBS Lett 577, 376–80.

    Article  PubMed  CAS  Google Scholar 

  70. Gupta, S., Schoer, R. A., Egan, J. E., Hannon, G. J. & Mittal, V. (2004) Inducible, reversible, and stable RNA interference in mammalian cells. Proc Natl Acad Sci U S A 101, 1927–32.

    Article  PubMed  CAS  Google Scholar 

  71. Czauderna, F. et al. (2003) Inducible shRNA expression for application in a prostate cancer mouse model. Nucleic Acids Res 31, e127.

    Article  PubMed  CAS  Google Scholar 

  72. Zhang, D. E. et al. (1996) CCAAT enhancer-binding protein (C/EBP) and AML1 (CBF alpha2) synergistically activate the macrophage colony-stimulating factor receptor promoter. Mol Cell Biol 16, 1231–40.

    PubMed  CAS  Google Scholar 

  73. Li, K., Lin, S. Y., Brunicardi, F. C. & Seu, P. (2003) Use of RNA interference to target cyclin E-overexpressing hepatocellular carcinoma. Cancer Res 63, 3593–7.

    PubMed  CAS  Google Scholar 

  74. Stegmeier, F., Hu, G., Rickles, R. J., Hannon, G. J. & Elledge, S. J. (2005) A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc Natl Acad Sci U S A 102, 13212–7.

    Article  PubMed  CAS  Google Scholar 

  75. Scherr, M., Battmer, K., Ganser, A. & Eder, M. (2003) Modulation of gene expression by lentiviral-mediated delivery of small interfering RNA. Cell Cycle 2, 251–7.

    PubMed  CAS  Google Scholar 

  76. Chen, J. et al. (2004) Stable expression of small interfering RNA sensitizes TEL-PDGFbetaR to inhibition with imatinib or rapamycin. J Clin Invest 113, 1784–91.

    Article  PubMed  CAS  Google Scholar 

  77. Zheng, X. et al. (2004) Gamma-catenin contributes to leukemogenesis induced by AML-associated translocation products by increasing the self-renewal of very primitive progenitor cells. Blood 103, 3535–43.

    Article  PubMed  CAS  Google Scholar 

  78. Kimchi-Sarfaty, C. et al. (2005) Efficient delivery of RNA interference effectors via in vitro-packaged SV40 pseudovirions. Hum Gene Ther 16, 1110–5.

    Article  PubMed  CAS  Google Scholar 

  79. Downing, J. R. (1999) The AML1-ETO chimaeric transcription factor in acute myeloid leukaemia: biology and clinical significance. Br J Haematol 106, 296–308.

    Article  PubMed  CAS  Google Scholar 

  80. Okuda, T., van Deursen, J., Hiebert, S. W., Grosveld, G. & Downing, J. R. (1996) AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84, 321–30.

    Article  PubMed  CAS  Google Scholar 

  81. Gelmetti, V. et al. (1998) Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol 18, 7185–91.

    PubMed  CAS  Google Scholar 

  82. Martinez, N. et al. (2004) The oncogenic fusion protein RUNX1-CBFA2T1 supports proliferation and inhibits senescence in t(8;21)-positive leukaemic cells. BMC Cancer 4, 44.

    Article  PubMed  CAS  Google Scholar 

  83. Nakamura, T. et al. (2002) ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell 10, 1119–28.

    Article  PubMed  CAS  Google Scholar 

  84. Yokoyama, A. et al. (2004) Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 24, 5639–49.

    Article  PubMed  CAS  Google Scholar 

  85. Pui, C. H., Schrappe, M., Ribeiro, R. C. & Niemeyer, C. M. (2004) Childhood and adolescent lymphoid and myeloid leukemia. Hematology (Am Soc Hematol Educ Program), 118–45.

    Google Scholar 

  86. Rowley, J. D. (1999) The role of chromosome translocations in leukemogenesis. Semin Hematol 36, 59–72.

    PubMed  CAS  Google Scholar 

  87. Armstrong, S. A. et al. (2003) Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell 3, 173–83.

    Article  PubMed  CAS  Google Scholar 

  88. Barthe, C., Cony-Makhoul, P., Melo, J. V. & Mahon, J. R. (2001) Roots of clinical resistance to STI-571 cancer therapy. Science 293, 2163.

    Article  PubMed  CAS  Google Scholar 

  89. Wilda, M., Fuchs, U., Wossmann, W. & Borkhardt, A. (2002) Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene 21, 5716–24.

    Article  PubMed  CAS  Google Scholar 

  90. Wohlbold, L. et al. (2003) Inhibition of bcr-abl gene expression by small interfering RNA sensitizes for imatinib mesylate (STI571). Blood 102, 2236–9.

    Article  PubMed  CAS  Google Scholar 

  91. Zhelev, Z. et al. (2004) Suppression of bcr-abl synthesis by siRNAs or tyrosine kinase activity by Glivec alters different oncogenes, apoptotic/antiapoptotic genes and cell proliferation factors (microarray study). FEBS Lett 570, 195–204.

    Article  PubMed  CAS  Google Scholar 

  92. Rapozzi, V. & Xodo, L. E. (2004) Efficient silencing of bcr/abl oncogene by single- and double-stranded siRNAs targeted against b2a2 transcripts. Biochemistry 43, 16134–41.

    Article  PubMed  CAS  Google Scholar 

  93. Ohba, H. et al. (2004) Inhibition of bcr-abl and/or c-abl gene expression by small interfering, double-stranded RNAs: cross-talk with cell proliferation factors and other oncogenes. Cancer 101, 1390–403.

    Article  PubMed  CAS  Google Scholar 

  94. Withey, J. M. et al. (2005) Targeting primary human leukaemia cells with RNA interference: Bcr-Abl targeting inhibits myeloid progenitor self-renewal in chronic myeloid leukaemia cells. Br J Haematol 129, 377–80.

    Article  PubMed  CAS  Google Scholar 

  95. Wohlbold, L. et al. (2004) All common p210 and p190 Bcr-abl variants can be targeted by RNA interference. Leukemia.

    Google Scholar 

  96. Danhauser-Riedl, S., Warmuth, M., Druker, B. J., Emmerich, B. & Hallek, M. (1996) Activation of Src kinases p53/56lyn and p59hck by p210bcr/abl in myeloid cells. Cancer Res 56, 3589–96.

    PubMed  CAS  Google Scholar 

  97. Gilliland, D. G. & Griffin, J. D. (2002) The roles of FLT3 in hematopoiesis and leukemia. Blood 100, 1532–1542.

    Article  PubMed  CAS  Google Scholar 

  98. Walters, D. K., Stoffregen, E. P., Heinrich, M. C., Deininger, M. W. & Druker, B. J. (2005) RNAi-induced down-regulation of FLT3 expression in AML cell lines increases sensitivity to MLN518. Blood 105, 2952–4.

    Article  PubMed  CAS  Google Scholar 

  99. Braasch, D. A. et al. (2004) Biodistribution of phosphodiester and phosphorothioate siRNA. Bioorg Med Chem Lett 14, 1139–43.

    Article  PubMed  CAS  Google Scholar 

  100. Song, E. et al. (2003) RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med 9, 347–51.

    Article  PubMed  CAS  Google Scholar 

  101. Urban-Klein, B., Werth, S., Abuharbeid, S., Czubayko, F. & Aigner, A. (2004) RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther.

    Google Scholar 

  102. Schiffelers, R. M. et al. (2004) Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res 32, e149.

    Article  PubMed  Google Scholar 

  103. Soutschek, J. et al. (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, 173–8.

    Article  PubMed  CAS  Google Scholar 

  104. Linenberger, M. L. (2005) CD33-directed therapy with gemtuzumab ozogamicin in acute myeloid leukemia: progress in understanding cytotoxicity and potential mechanisms of drug resistance. Leukemia 19, 176–82.

    Article  PubMed  CAS  Google Scholar 

  105. Song, E. et al. (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 23, 709–17.

    Article  PubMed  CAS  Google Scholar 

  106. Vornlocher, H. P. (2006) Antibody-directed cell-type-specific delivery of siRNA. Trends Mol Med 12, 1–3.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Thomas, M., Soria, N.M., Heidenreich, O. (2007). RNA Interference in Haematopoietic and Leukaemic Cells. In: Al-Rubeai, M., Fussenegger, M. (eds) Systems Biology. Cell Engineering, vol 5. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5252-9_2

Download citation

Publish with us

Policies and ethics

Navigation