Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 134))

Abstract

There can be no doubt that the assumptions used in modeling elastohydrodynamics for the temperature, pressure and shear rate dependence of viscosity are at odds with empirical fact. As a result, there has been relatively little progress since the classic Newtonian film thickness solutions toward relating film thickness and traction to the properties of individual liquid lubricants and it is not clear at this time that full numerical solutions can even be obtained for heavily loaded contacts using accurate models. One central issue is the validity of Reynolds equation, derived under the isoviscous assumption, for conditions where the local pressure-viscosity coefficient can approach 100 GPa−1. Some pressing problems are reviewed in this paper, including the effects of shear-thinning on film thickness and traction, and the proper definition of the pressure-viscosity coefficient for film thickness calculations. Wherever possible, for credibility, sources from outside of Tribology will be used. Then some opportunities for the field will be discussed. These opportunities result from advances in molecular dynamics simulations and improved techniques for high-pressure measurements and should shed light on the relationship between molecular structure and performance in contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. Dowson and G.R. Higginson, Elasto-Hydrodynamic Lubrication, Pergamon Press, Oxford, 1966, p. 69.

    Google Scholar 

  2. H. Blok, Inverse problems in hydrodynamic lubrication and design directives for lubricated flexible surfaces, in Proc. Intern. Symp. Lubrication and Wear, Muster and Sternlicht (eds), 1963, p. 74.

    Google Scholar 

  3. J. Zhao and F. Sadeghi, Analysis of EHL circular contact shut down, ASME J. Tribology, 125, 2003, 76–90.

    Article  Google Scholar 

  4. R.P. Glovnea and H. A. Spikes, Elastohydrodynamic film collapse during rapid deceleration. Part I: Experimental results, ASME J. Tribology, 123, 2001, 254–261.

    Article  Google Scholar 

  5. R.V. Kleinschmidt, D. Bradbury and M. Mark, Viscosity and Density of over Forty Lubricating Fluids of Known Composition at Pressures to 150,000 psi and Temperatures to 425 F, ASME, New York, 1953.

    Google Scholar 

  6. S. Bair, An experimental verification of the significance of the reciprocal asymptotic isoviscous pressure, STLE Tribology Transactions, 36, 1993, 153–162.

    Google Scholar 

  7. C.J.A. Roelands, Correlational aspects of viscosity-temperature-pressure relationship of lubricating oils, Thesis, Delft, 1966, p. 106.

    Google Scholar 

  8. A.J. Moore, The behavior of lubricants in elastohydrodynamic contacts, Proc. Instn. Mech. Engrs., 211(J), 1997, 91–106.

    Google Scholar 

  9. V.V. Brazhkin and A.G. Lyapin, Universal viscosity growth in metallic melts at megabar pressures: The vitreous state of the earth’s inner core, Physics Uspekhi, 43(5), 2000, 493–508.

    Article  Google Scholar 

  10. A. Dandridge and D.A. Jackson, Measurements of viscosity under pressure: A new method, J. Physics, D: Appl. Physics, 14, 1981, 829–831.

    Article  Google Scholar 

  11. M. Renardy, Some remarks on the Navier-Stokes equations with a pressure-dependent viscosity, Comm. in Partial Diff. Eqn., 11(7), 1986, 779–793.

    MATH  MathSciNet  Google Scholar 

  12. S. Bair, M. Khonsari and W.O. Winer, High-Pressure rheology of lubricants and limitations of the Reynolds equation, Trib. Intern., 31(10), 1998, 573–586.

    Article  Google Scholar 

  13. C.T. Schaefer, P. Giese, W.B. Rowe and N.H. Woolley, elastohydrodynamically lubricated line contact based on the Navier-Stokes equations, in Proc. 26th Leeds-Lyon Symp. Trib., Elsevier, Amsterdam, 2000, pp. 57–59.

    Google Scholar 

  14. T. Almqvist and R. Larsson, The Navier-Stokes approach for thermal EHL line contact solutions, Trib. Intern., 35, 2002, 163–170.

    Article  Google Scholar 

  15. K.R. Rajagopal and A.Z. Szeri, On an inconsistency in the derivation of the equations of elastohydrodynamic lubrication, Proc. Roy. Soc. Lond. A, 459, 2003, 2771–2786.

    MATH  MathSciNet  Google Scholar 

  16. J. Hron, J. Malek and K.R. Rajagopal, Simple flows of liquids with pressure-dependent viscosities, Proc. Roy. Soc. Lond. A, 457, 2001, 1603–1622.

    MATH  Google Scholar 

  17. S. Bair and C. McCabe, A study of mechanical shear bands in liquids at high pressure, Trib. Intern., 37(10), 2004, 783–789.

    Article  Google Scholar 

  18. R.B. Rhodes, Development of ASTM Standard Test Methods for measuring engine oil viscosity using rotational viscometers at high-temperature and high shear rates, in High-Temperature, High-Shear (HTHS) Oil Viscosity: Measurement and Relationship to Engine Operation, ASTM STP 1068, James A. Spearot (ed.), American Society for Testing and Materials, Philadelphia, 1989, pp. 14–22.

    Google Scholar 

  19. S. Bair, A more complete description of the shear rheology of high-temperature, high-shear journal bearing lubrication, STLE Trib. Trans., accepted 2004.

    Google Scholar 

  20. S. Bair and F. Qureshi, The high-pressure rheology of polymer-oil solutions, Trib. Intern., 36, 2003, 637–645.

    Article  Google Scholar 

  21. C.R. Schultheisz and S.D. Leigh, Certification of the rheological behavior of SRM 2490, Polyisobutylene dissolved in 2,6,10,14-Tetramethylpentadecane, NIST Special Publication 260-143, 2002, pp. 2–27.

    Google Scholar 

  22. S. Bair, C. McCabe and P.T. Cummings, Calculation of viscous EHL traction for Squalane using molecular simulation and rheometry, Trib. Lett., 13(4), 2002, 251–254.

    Article  Google Scholar 

  23. F.H. Ree, T. Ree and H. Eyring, Relaxation theory of transport problems in condensed systems, Ind. Eng. Chem., 50, 1958, 1036–1038.

    Article  Google Scholar 

  24. S.J. Hahn, H. Eyring, I. Higuchi and T. Ree, Flow properties of lubricating oils under pressure, NLGI Spokesman, 21(3), 1958, 123–128.

    Google Scholar 

  25. S. Bair, The high pressure rheology of some simple model hydrocarbons, Proc. Instn. Mech. Engrs., 216(J), 2002, 139–149.

    Google Scholar 

  26. D.W. Van Krevelen, Properties of Polymers, 3rd Edition, Elsevier, Amsterdam, 1990, pp. 475–486.

    Google Scholar 

  27. S. Bair, The high-pressure rheology of mixtures, ASME J. Tribology, Paper 1040, 2004.

    Google Scholar 

  28. M.J.A. Holmes, H.P. Evans, T.G. Hughes and R.W. Snidle, Transient elastohydrodynamic point contact analysis using a new coupled differential deflection method. Part 2: Results, Proc. Instn. Mech. Engrs., 217(J), 2003, 305–321.

    Google Scholar 

  29. L.I. Kioupis and E.J. Maginn, Rheology, dynamics, and structure of hydrocarbon blends: A molecular dynamics study of n-Hexane/n-Hexadecane mixtures, Chem. Eng. J., 74, 1999, 129–146.

    Article  Google Scholar 

  30. S. Bair, Complete isothermal solution for the viscous regime of concentrated contact traction, Intl. J. Appl. Mech. Engr., 7(3), 2002, 719–727.

    Google Scholar 

  31. J.F. Hutton and M.C. Phillips, Shear modulus of liquids at elastohydrodynamic pressures, Nature Phys. Sci., 238, 1972, 141–142.

    Google Scholar 

  32. K.L. Johnson and J.L. Tevaarwerk, Shear behavior of elastohydrodynamic oil films, Proc. Roy. Soc. Lond. A, 356, 1977, 215–236.

    Article  MATH  Google Scholar 

  33. S. Bair, The nature of the logarithmic traction gradient, Trib. Intern., 35, 2002, 591–597.

    Article  Google Scholar 

  34. S. Bair, Ordinary shear-thinning behavior in liquids and its effect upon EHL traction, in Tribology Research: From Model Experiment to Industrial Problem, G. Dalmaz et al. (eds), Elsevier, 2001, pp. 733–742.

    Google Scholar 

  35. J.A. Greenwood, Two-dimensional flow of a non-Newtonian lubricant, Proc. Instn. Mech. Engrs., 214(J), 2000, 29–41.

    Google Scholar 

  36. S. Bair and F. Qureshi, Ordinary shear-thinning behavior and its effect upon EHL film thickness, in Proc. 29th Leeds-Lyon Symp., Tribology, Elsevier, Amsterdam, 2003, pp. 693–699.

    Google Scholar 

  37. R.C. Gunderson and A.W. Hart, Synthetic Lubricants, Reinhold, New York, 1962, pp. 87–88.

    Google Scholar 

  38. C. McCabe, C.W. Manke and P.T. Cummings, Predicting the Newtonian viscosity of complex fluids from high strain rate molecular simulations, J. Chem. Phys., 116(8), 2002, 3339–3342.

    Article  Google Scholar 

  39. S. Bair, McCabe and P.T. Cummings, Comparison of non-equilibrium molecular dynamics with experimental measurements in the nonlinear shear-thinning regime, Phys. Rev. Lett., 88(5), 2002, 058302.

    Article  Google Scholar 

  40. P.A. Gordon, Characterizing isoparaffin transport properties with Stokes-Einstein relationships, Ind. Eng. Chem. Res., 42(26), 2003, 7025–7036.

    Article  Google Scholar 

  41. P.A. Gordon, Extrapolation of rheological properties for lubricant components with Stokes-Einstein relationships, to be submitted.

    Google Scholar 

  42. M.G. Martin and J.I. Siepman, Novel configurational-bias Monte Carlo method for branched molecules. Transferable potentials for phase equilibria. 2. United-atom description of branched alkanes, J. Phys. Chem. B, 103(21), 1999, 4508–4517.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Bair, S., Gordon, P. (2006). Rheological Challenges and Opportunities for EHL. In: Snidle, R.W., Evans, H.P. (eds) IUTAM Symposium on Elastohydrodynamics and Micro-elastohydrodynamics. Solid Mechanics and Its Applications, vol 134. Springer, Dordrecht . https://doi.org/10.1007/1-4020-4533-6_2

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4533-6_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4532-5

  • Online ISBN: 978-1-4020-4533-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation