Excitation energy trap** in anoxygenic photosynthetic bacteria

  • Chapter
Discoveries in Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 20))

  • 158 Accesses

Abstract

Various aspects of excitation energy conversion in anoxygenic photosynthetic bacteria are surveyed. This minireview discusses different models that have been proposed during the past 60 years to describe excitation energy transfer from an antenna molecule to the reaction center. First, a simple one-dimensional model was suggested, but over time the models became more detailed when structural and dynamic information was included. This review focuses mainly on the picture of purple bacteria and green sulfur bacteria developed during the past decades.

Sieglinde Neerken dedicates this article to her mentor and coauthor Jan Amesz (see Figure 1 for his photograph). Jan passed away on January 29, 2001. His obituary by A.J. Hoff and T.J. Aartsma appears in Photosynthesis Research 71: 1–4 (2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abdourakhmanov IA, Danielius RV and Razjivin AP (1989) Efficiencies of excitation trap** by reaction centres of complex B890 from Chromatium minutissimum. FEBS Lett 245: 47–50

    Article  Google Scholar 

  • Amesz J and Vredenberg WJ (1966) Near-infrared action spectra of fluorescence, cytochrome oxidation and shift in carotenoid absorption in purple bacteria. Biochim Biophys Acta 126: 254–261

    PubMed  CAS  Google Scholar 

  • Andersson PO, Cogdell RJ and Gillbro T (1996) Femtosecond dynamics of carotenoid-to-Bacteriochlorophyll a energy transfer in the light-harvesting antenna complexes of the purple bacterium Chromatium purpuratum. Chem Phys 210: 195–217

    Article  CAS  Google Scholar 

  • Bay Z and Pearlstein RM (1963) A theory of energy transfer in the photosynthetic unit. Proc Natl Acad Sci USA 50: 1071–1078

    Article  PubMed  CAS  Google Scholar 

  • Beauregard M, Martin I and Holzwarth AR (1991) Kinetic modelling of exciton migration in photosynthetic systems. 1. Effects of pigment heterogeneity and antenna topography on exciton kinetics and charge separation yields. Biochim Biophys Acta 1060: 271–283

    CAS  Google Scholar 

  • Blankenship RE, Madigan MT and Bauer CE (1995) Anoxygenic Photosynthetic Bacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Causgrove TP, Brune DC and Blankenship RE (1992) Förster energy transfer in chlorosomes of green photosynthetic bacteria. J Photochem Photobiol 15: 171–179

    Article  CAS  Google Scholar 

  • Clayton RK (1967) An analysis of the relations between fluorescence and photochemistry during photosynthesis. J Theor Biol 14: 173–186

    Article  PubMed  CAS  Google Scholar 

  • Clayton RK and Sistrom WR (1966) An absorption band near 800 nm associated with 870 in photosynthetic bacteria. Photochem Photobiol 5: 661–668

    CAS  Google Scholar 

  • Clayton RK and Sistrom WR (1978) The Photosynthetic Bacteria. Plenum Press, New York

    Google Scholar 

  • Cogdell RJ, Hipkins MF, MacDonald W and Truscott TG (1981) Energy transfer between the caroenoid and the bacteriochlorophyll within the B800–850 light-harvesting pigment-protein complex of Rhodopseudomonas sphaeroides. Biochim Biophys Acta 634: 191–202

    Article  PubMed  CAS  Google Scholar 

  • Cogdell RJ, Fyfe PF, Barret SJ, Prince SM, Freer AA, Isaacs NW, McGlynn P and Hunter CN (1996) The purple bacterial photosynthetic unit. Photosynth Res 48: 55–63

    Article  CAS  Google Scholar 

  • Cogdell RJ, Isaacs NW, Howard TD, McLunskey K, Fraser NJ and Prince SM (1999) How photosynthetic bacteria harvest solar light. J Bacteriol 181: 3869–3879

    PubMed  CAS  Google Scholar 

  • Damjanovic A, Ritz T and Schulten K (2000) Excitation energy trap** by the reaction center of Rhodobacter sphaeroides. Int J Quant Chem 77: 139–151

    Article  CAS  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Hber R and Michel H (1984) Xray structure analysis of a membrane protein complex. Electron density map at 3 Ã… resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 180: 385–398

    Article  PubMed  CAS  Google Scholar 

  • Deisenhofer J, Epp O, Sinning I and Michel H (1995) Crystallographic refinement at 2.3 Ã… resolution and a refined model of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 246: 429–457

    Article  PubMed  CAS  Google Scholar 

  • Duysens LNM (1951) Transfer of light energy within the pigment systems present in photosynthesizing cells. Nature 168: 548–553

    PubMed  CAS  Google Scholar 

  • Duysens LNM (1952) Transfer of Excitation Energy in Photosynthesis. PhD Thesis, Leiden University, The Netherlands

    Google Scholar 

  • Emerson R and Arnold W (1932) The photochemical reaction in photosynthesis. J Gen Physiol 16: 191–205

    Article  CAS  Google Scholar 

  • Fenna RE and Matthews BW (1975) Structure of a bacteriochlorophyll-protein from the green photosynthetic bacterium Chlorobium limicola: crystallographic evidence for a trimer. Nature 258: 573–577

    Article  CAS  Google Scholar 

  • Fetisova ZG and Borisov AY (1980) Picosecond time scale of heterogeneous excitation energy transfer from accessory lightharvesting bacterioviridin antenna to main bacteriochlorophyll a antenna in photoactive pigment-protein complexes obtained from Chlorobium limicola, a green bacterium. FEBS Lett 114: 323–326

    Article  CAS  Google Scholar 

  • Förster Th (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys 2: 55–75

    Google Scholar 

  • Franck J and Teller E (1938) Migration and photochemical action of excitation energy in crystals. J Chem Phys 6: 861–872

    Article  CAS  Google Scholar 

  • Francke C, Otte SCM, Miller M, Amesz J and Olson JM (1996) Energy transfer from carotenoid and FMO protein in subcellular preparations from green sulfur bacteria: spectroscopic characterization of an FMO reaction center core complex at low temperature. Photosynth Res 50: 71–77

    Article  CAS  Google Scholar 

  • Francke C, Permentier HP, Franken EM, Neerken S and Amesz J (1997) Isolation and properties of photochemically active reaction center complexes from the green sulfur bacterium Prosthecochloris aestuarii. Biochemistry 36: 14167–14172

    Article  PubMed  CAS  Google Scholar 

  • Freiberg A (1995) Coupling of antennas to reaction centers. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 385–398. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Gaffron H and Wohl R (1936) Zur Theorie der Assimilation. Naturwissenschaften 24: 81–90, 103–107

    Article  CAS  Google Scholar 

  • Gillbro T, Sundström V and Olson JM (1988) Picosecond energy transfer kinetics in chlorosomes and bacteriochlorophyll a proteins of Chlorobium limicola. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (eds) Green Photosynthetic Bacteria, pp 91–96. Plenum Press, New York

    Google Scholar 

  • Goedheer JC (1959) Energy transfer between carotenoids and bacteriochlorophyll in chromatophores of purple bacteria. Biochim Biophys Acta 35: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Goedheer JC (1972) Temperature dependence of absorption and fluorescence spectra of bacteriochlorophylls in vivo and in vitro. Biochim Biophys Acta 275: 169–176

    Article  PubMed  CAS  Google Scholar 

  • Goedheer JC (1973) Fluorescence polarization and pigment orientation in photosynthetic bacteria. Biochim Biophys Acta 292: 665–676

    Article  PubMed  CAS  Google Scholar 

  • Govindjee, Amesz J and Fork DC (1986) Light Emission by Plants and Bacteria. Academic Press, Orlando, Florida

    Google Scholar 

  • Gülen D (1996) Interpretation of the exctited-state structure of the Fenna-Matthews-Olson pigment-protein complex of Prostecochloris aestuarii based on the simultaneous simulation of the 4 K absorption, linear dichorism, and singlet triple absorption difference spectra: a possible excitonic explanation? J Phys Chem 100: 17683–17689

    Article  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauß N (2001) Three-dimensional structure of cyanobacterial Photosystem I at 2.5 Ã… resolution. Nature 411: 909–917

    Article  PubMed  CAS  Google Scholar 

  • Karrasch S, Bullough PA and Ghosh R (1995) The 8.5 Ã… projection map of the light-harvesting somplex I from Rhodospirillum rubrum reaveals a ring composed of 16 subunits. EMBO J 14: 631–638.

    PubMed  CAS  Google Scholar 

  • Kleinherenbrink FAM, Deinum G, Otte SCM, Hoff AJ and Amesz J (1992) Energy transfer from long-wavelength absorbing antenna bacteriochlorophylls to the reaction center. Biochim Biophys Acta 1099: 175–181

    Article  CAS  Google Scholar 

  • Knox RS (1968) On the theory of trap** of excitation in the photosynthetic unit. J Theor Biol 21: 244–259

    Article  PubMed  CAS  Google Scholar 

  • Koepke H, Hu X, Muencke C, Schulten K and Michel H (1996) The crystal structure of the light-harvesting complex II (B800–850) from Rhodospirillum molischianum. Structure 4: 581–597

    Article  PubMed  CAS  Google Scholar 

  • Kramer H, Aartsma TJ and Amesz J (1996) Excited states and charge separation in membranes of the green sulfur bacterium Prosthecochloris aestuarii. Photochem Photobiol 64: 26–31

    CAS  Google Scholar 

  • Kramer H, Francke C, Hunter CN and Amesz J (1998) The size of the LH 1 antenna of purple bacteria. In: Garab G (ed) Proceedings of the XIth International Photosynthesis Congress, Photosynthesis: Mechanisms and Effects, pp 89–92. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Krasnovskii AA, Erokhin YE and Yiu-Tsun K (1962) Fluorescence of aggregated forms of bacterioviridin and chlorophyll in relation to the state of pigments in photosynthetisizing organisms. Dokl Akad Nauk SSSR 143: 456-459

    Google Scholar 

  • Lin S, Chiou H-C, Kleinherenbrink FAM and Blankenship RE (1994) Time-resolved spectroscopy of energy and electron transfer processes in the photosynthetic bacterium Heliobacterium mobilis. Biophys J 66: 437–445

    PubMed  CAS  Google Scholar 

  • Liebl U, Lambry J-C, Leibl W, Breton J, Martin J-L and Vos MH (1996) Energy and electron transfer upon selective femtosecond excitation of pigments in membranes of Heliobacterium mobilis. Biochemistry 35: 9925–9934

    Article  PubMed  CAS  Google Scholar 

  • Louwe RJW, Vrieze J, Hoff AJ and Aartsma TJ (1997) Toward an integral interpreation of the optical steady-state spectra of the FMO-complex of Prostecochloris aestuarii. 2. Exciton simulations. J Phys Chem B 101: 11280–11287

    Article  CAS  Google Scholar 

  • Lu X and Pearlstein RM (1993) Simulations of Prosthecochloris bacteriochlorophyll a-protein optical spectra improved by parametric computer search. Photochem Photobiol 57: 86–91

    CAS  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517–521

    Article  CAS  Google Scholar 

  • Montroll EW (1969) Random walks on lattices containing traps. J Phys Soc Jap 26: 6–10

    Google Scholar 

  • Neerken S (2001) Pathways of Energy Conversion in Pigment-Protein Complexes of Anoxygenic Photosynthetic Bacteria. PhD Thesis, Leiden University

    Google Scholar 

  • Neerken S, Permentier HP, Francke C, Aartsma TJ and Amesz J (1998) Excited states and trap** in reaction center complexes of the green sulfur bacterium Prosthecochloris aestuarii. Biochemistry 37: 10792–10797

    Article  PubMed  CAS  Google Scholar 

  • Neerken S, Schmidt KA, Aartsma TJ and Amesz J (1999) Dynamics of energy conversion in reaction center core complexes of the green sulfur bacterium Prosthecochloris aestuarii at low temperature. Biochemistry 38: 13216–13222

    Article  PubMed  CAS  Google Scholar 

  • Neerken S, Aartsma TJ and Amesz J (2000) Pathways if energy transformation in antenna reaction center complexes of Heliobacillus mobilis. Biochemistry 39: 3297–3303

    Article  PubMed  CAS  Google Scholar 

  • Oh-oka H, Kamei S, Matsubara H, Lin S, van Noort PI and Blankenship RE (1998) Transient absorption spectroscopy of energytransfer and trap** processes in the reaction center complex of Chlorobium tepidum. J Phys Chem B 102: 8190–8195

    Article  CAS  Google Scholar 

  • Olson JM and Clayton RK (1966) Sensitization of photoreactions in eimlijellen’s Rhodopseudomonas by a pigment absorbing at 830 µm. Photochem Photobiol 5: 655–660

    CAS  Google Scholar 

  • Olson JM and Sybesma C (1963) Energy transfer and cytochrome oxidation in green bacteria. In: Gest H, San Pietro A and Vernon LP (eds) Bacterial Photosynthesis, pp 413–422. Antioch Press, Yellow Springs, Ohio

    Google Scholar 

  • Otte SCM (1992) Pigment systems of photosynthetic bacteria and Photosystem II of green plants. PhD Thesis, Leiden University, The Netherlands

    Google Scholar 

  • Otte SCM, Kleinherenbrink FAM and Amesz J (1993) Energy transfer between the reaction center and the antenna in purple bacteria. Biochim Biophys Acta 1143: 84–90

    Article  CAS  Google Scholar 

  • Paillotin G, Swenberg CE, Breton J and Geacintov NE (1979) Analysis of picosecond laser-induced fluorescence phenomena in photosynthetic membranes utilizing a master equation approach. Biophys J 25: 513–533

    Article  PubMed  CAS  Google Scholar 

  • Pearlstein RM (1967) Migration and trap** of excitation quanta in photosynthetic units. In: Brookhaven Symp Biol 19, Energy Conversion by the Photosynthetic Apparatus, pp 8–15. Brookhaven National Laboratory, Upton, New York

    Google Scholar 

  • Pearlstein RM (1992) Theory of the optical spectra of the bacteriochlorophyll-a antenna protein trimer from Prosthecochloris aestuarii. Photosynth Res 31: 213–226

    Article  CAS  Google Scholar 

  • Pearlstein RM and Hemenger RP (1978) Bacteriochlorophyll electronic transition moment directions in bacteriochlorophyll aprotein. Proc Natl Acad Sci USA 75: 4920–4924

    Article  PubMed  CAS  Google Scholar 

  • Permentier HP (2001) Light-harvesting and core complexes of anoxygenic phototrophic bacteria. PhD thesis, Leiden University, The Netherlands

    Google Scholar 

  • Renger T and May V (1998) Ultrafast exciton motion in photosynthetic antenna systems: the FMO-complex. J Phys Chem A 102: 4381–4391

    Article  CAS  Google Scholar 

  • Renger T, May V and Kühn O (2001) Ultrafast excitation energy transfer dynamics in photosynthetic pigment-protein complexes. Phys Rep 243: 137–254

    Article  Google Scholar 

  • Robinson GW (1967) Excitation transfer and trap** in photosynthesis. In: Brookhaven Symp Biol 19, Energy Conversion by the Photosynthetic Apparatus, pp 16–48. Brookhaven National Laboratory, Upton, New York

    Google Scholar 

  • Somsen OJG, van Mourik F, van Grondelle R and Valkunas L (1994) Energy migration and trap** in a spectrally and spatially inhomogeneous light-harvesting antenna. Biophys J 66: 1580–1596

    PubMed  CAS  Google Scholar 

  • Sundström V and van Grondelle R (1995) Coupling of antennas to reaction centers. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 349–372. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Sundström V, Pullerits T and van Grondelle R (1999) Photosynthetic light-harvesting: reconciling dynamics and structure of purple bacterial LH 2 reveals function of photosynthetic unit. J Phys Chem B 103: 2327–2346

    Article  Google Scholar 

  • Swarthoff T (1982) The photosynthetic apparatus of a green sulfur bacterium. PhD Thesis, Leiden University, The Netherlands

    Google Scholar 

  • Swarthoff T, Amesz J, Kramer HJM and Rijgersberg CP (1981) The reaction center and antenna pigments of green photosynthetic bacteria. Isr J Chem 21: 332–337

    CAS  Google Scholar 

  • Sybesma C and Olson JM (1963) Transfer of chlorophyll excitation energy in green photosynthetic bacteria. Proc Natl Acad Sci USA 49: 248–255

    Article  PubMed  CAS  Google Scholar 

  • Timpmann K, Zhang FG, Freiberg A and Sundström V (1993) Detrap** of excitation energy from the reaction centre in the photosynthetic bacterium Rhodospirillum rubrum. Biochim Biophys Acta 1183: 185–193

    Article  CAS  Google Scholar 

  • Timpmann K, Freiberg A and Sundström V (1995) Energy trap** and detrap** in the photosynthetic bacterium Rhodopseudomonas viridis: transfer-to-trap limited dynamics. Chem Phys 194: 275–283

    Article  CAS  Google Scholar 

  • Tronrud DE, Schmidt MF and Matthews BW (1986) Structure and X-ray amino acid sequence of a bacteriochlorophyll a protein from Prosthecochloris aestuarii refined at 1.9 Ã… resolution. J Mol Biol 188: 443–454

    Article  PubMed  CAS  Google Scholar 

  • Valkunas L, Liuolia V, Dekker JP and van Grondelle R (1995) Description of energy migration and trap** in Photosystem I by a model with two distance scaling parameters. Photosynth Res 43: 149–154

    Article  CAS  Google Scholar 

  • van Amerongen H, Valkunas L and van Grondelle R (2000) Photosynthetic Excitons. World Scientific Publishing, Singapore

    Google Scholar 

  • van Dorssen RJ, Gerola PD, Olson JM and Amesz J (1986) Optical and structural properties of chlorosomes of the photosynthetic green sulfur bacteria Chlorobium limicola. Biochim Biophys Acta 848: 77–82

    Article  Google Scholar 

  • van Grondelle R (1985) Excitation energy transfer, trap** and annihilation in photosynthetic systems. Biochim Biophys Acta 811: 147–195

    Google Scholar 

  • van Grondelle R, Dekker JP, Gillbro T and Sundström V (1994) Energy transfer and trap** in photosynthesis. Biochim Biophys Acta 1187: 1–65

    Article  CAS  Google Scholar 

  • van Noort PI, Francke C, Schoumans N, Otte, SCM, Aartsma TJ and Amesz J (1994) Chlorosomes of green sulfur bacteria: pigment composition and energy transfer. Photosynth Res 41: 191–203

    Article  Google Scholar 

  • Vredenberg WJ and Duysens LNM (1963) Transfer of energy from bacteriochlorophyll to a reaction center during bacterial photosynthesis. Nature 197: 355–357

    Article  PubMed  CAS  Google Scholar 

  • Vulto SIE, de Baat MA, Louwe RJW, Permentier HP, Neef T, Miller M, van Amerongen H and Aartsma TJ (1998a) Excited state dynamics in FMO antenna complexes from photosynthetic green sulfur bacteria: a kinetic model. J Phys Chem B 102: 9577–958

    Article  CAS  Google Scholar 

  • Vulto SIE, Neerken S, Louwe RJW, de Baat MA, Amesz J and Aartsma TJ (1998b) Excited-state structure and dynamics in FMO antenna complexes from photosynthetic green sulfur bacteria. J Phys Chem B 102: 10630–10635

    Article  CAS  Google Scholar 

  • Wang RT and Clayton RK (1971) The absolute yield of bacteriochlorophyll fluorescence in vivo. Photochem Photobiol 13: 215–224

    PubMed  CAS  Google Scholar 

  • Wassink EC, Katz E and Dorrestein R (1939) Infrared absorption spectra of various strains of purple bacteria. Enzymologia 7: 113–129

    CAS  Google Scholar 

  • Wendling M, Pullerits T, Przyjalgowski MA, Vulto SIE, Aartsma TJ, van Grondelle R and van Amerongen H (2000) Electronvibrational coupling in the Fenna-Matthews-Olson complex of Prosthecochloris aestuarii determined by temperature dependent absorption and fluorescence line narrowing measurements. J Phys Chem 104: 5825–5831

    CAS  Google Scholar 

  • Zouni A, Witt H-T, Kern J, Fromme P, Krauß N, Saenger W and Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Ã… resolution. Nature 409: 739–743

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Amesz, J., Neerken, S. (2005). Excitation energy trap** in anoxygenic photosynthetic bacteria. In: Govindjee, Beatty, J.T., Gest, H., Allen, J.F. (eds) Discoveries in Photosynthesis. Advances in Photosynthesis and Respiration, vol 20. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3324-9_14

Download citation

Publish with us

Policies and ethics

Navigation