Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 186))

  • 1810 Accesses

Abstract

Near-field optical microscopy provides clue advantages for the future nanoscale inspection of organic and inorganic materials providing ultra-short time resolution and improved spatial confinement. Starting from basic properties of optical waves, this contribution summarises what chemical and physical information may be collected when performing such (near-field) optical experiments resulting in specific and functional properties of the material under consideration. Also near-field optical microscopy (SNOM) is discussed both from is theoretical and experimental point of view, directly leading to the modern type of scattering near-field optical microscopy (s-SNOM). That type of near-field method will definitely lead to the expected realm and revival for local optical detection and tracking of functional systems on the 10 nm scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Deutsche Agenda: Optische Technologien für das 21. Jahrhundert, VDI Technologiezentrum, Düsseldorf, (2000), ISBN 3-00-006083-9.

    Google Scholar 

  2. Pohl, D., Denk, W., and Lanz, M. (1984) Optical stethoscopy: Image recording with resolution λ/20, Appl. Phys. Lett. 44, 651–653.

    Article  ADS  Google Scholar 

  3. Fowles, G.R. (1989) Introduction to Modern Optics, Dover Publishing, New York.

    Google Scholar 

  4. Klar, T.A., Dyba, M., and Hell, S.W. (2001) Stimulated emission depletion microscopy with an offset depleting beam, Appl. Phys. Lett. 78, 393–395.

    Article  ADS  Google Scholar 

  5. Tarrach, G., Lagos, P.L., Hermans, R.Z., Loppacher, Ch., Schlaphof, F., and Eng, L.M. (2001) High-resolution spot allocation for Raman spectroscopy on ferroelectrics by polarization and piezoresponse force microscopy, Appl. Phys. Lett. 79, 3152–3154.

    Article  ADS  Google Scholar 

  6. Abbe, E. (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung, M. Schutze's Archiv für mikroskopische Anatomie IX 413; Abbe, E. (1982) The Relation of Aperture and Power in the Microsope, J. Royal Soc. II, 300; Abbe, E. (1982) The Relation of Aperture and Power in the Microsope, J. Royal Soc. III, 790; Abbe, E. (1904) Gesammelte Abhandlungen, Verlag Gustav Fischer, Jena.

    Google Scholar 

  7. Renger, J., Deckert, V., Hellmann, I., Grafström, S., and Eng, L.M. J. (2004) Evanescent wave scattering and local electric field enhancement at ellipsoidal silver particles in the proximity of a glass surface sharp noble metal tips, Opt. Soc. Am. A 21, in press.

    Google Scholar 

  8. Synge, E.H. (1928) A Suggested Method for extending Microscopic Resolution into the Ultra-Microscopic Region, Philos. Mag. 6, 356–362.

    Google Scholar 

  9. Zenhäusern, F., O'Boyle, M.P., and Wickramasinghe, H.K. (1994) Apertureless near-field optical microscope, Appl. Phys. Lett. 65, 1623–1625.

    Article  ADS  Google Scholar 

  10. Stöckle, R.M., Suh, Y.D., Deckert, V., and Zenobi, R. (2000) Nanoscale chemical analysis by tip-enhanced Raman spectroscopy, Chem. Phys. Lett. 318, 131–136.

    Article  ADS  Google Scholar 

  11. **e, X.S. and Dunn, R.C. (1994) Probing Single Molecule Dynamics, Science 265, 361–364.

    Article  ADS  Google Scholar 

  12. Heinzelmann, H. (1996) Ph.D. thesis, University of Basel.

    Google Scholar 

  13. Eng, L.M. and Güntherodt, H.-J. (2000) Scanning Force Microscopy and Near-Field Optical Microscopy of Ferroelectric and Ferroelastic Domain Walls, Ferroelectrics 236, 35–46.

    Article  Google Scholar 

  14. Betzig, E., Trautmann, J.K., Wolfe, R., Gyorgy, E.M., Finn, P.L., Kryder, M.H., and Chang, C.-H. (1992) Near-field magneto-optics and high density data storage, Appl. Phys. Lett. 61, 142–144.

    Article  ADS  Google Scholar 

  15. Seidel, J., Grafström, S., Loppacher, Ch., Trogisch, S. Schlaphof, F., and Eng, L.M. (2001) Near-Field Spectroscopy with White-Light Illumination, Appl. Phys. Lett. 79, 2291–2293.

    Article  ADS  Google Scholar 

  16. Voit, B., Braun, F., Loppacher, Ch., Trogisch, S., and Eng, L.M. (2002) Photolabile Ultrathin Polymer Films for Spatially Defined Attachment of Nanoobjects, Poly. Mater.: Sci. Eng. 87, 407–408.

    Google Scholar 

  17. Braun, F., Eng, L., Trogisch, S., and Voit, B. (2003) Novel Labile Protected Amine Terpolymers for the Preparation of Structured Functionalized Surfaces: Synthesis and Characterization, Macromol. Chem. Phys. 204, 1486–1496.

    Article  Google Scholar 

  18. Loppacher, Ch., Trogisch, S., Braun, F., Zherebov, A., Grafström, S., Eng, L.M., and Voit, B. (2002) Metal Salt Complexation of Spin-coated Ultrathin Diazosulfonate Terpolymer Films, Macromolecules 35, 1936–1946; Braun, F., Eng, L.M., Loppacher, Ch. Trogisch, S., and Voit, B. (2002) Novel Diazosulfonate-terpolymers for the preparation of structured functionalized surfaces — synthesis and characterization, Macromol. Chem. Phys. 203, 1781–1790.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this paper

Cite this paper

Eng, L. (2005). Nanoscale Probing of Physical and Chemical Functionality with Near-Field Optical Microscopy. In: Vilarinho, P.M., Rosenwaks, Y., Kingon, A. (eds) Scanning Probe Microscopy: Characterization, Nanofabrication and Device Application of Functional Materials. NATO Science Series II: Mathematics, Physics and Chemistry, vol 186. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3019-3_5

Download citation

Publish with us

Policies and ethics

Navigation