Phosphoproteomic Analysis of Lymphocyte Signaling

  • Conference paper
Lymphocyte Signal Transduction

Part of the book series: Advances in Experimental Medicine and Biology ((volume 584))

6. Concluding Remarks

Through fusion of innovations in high-throughput chromatographic separations of phosphopeptides, detection by mass spectrometry, and bioinformatic analysis, we have assembled a formidable tool to complement the traditional methodologies typically used to study signaling pathways. Although discovery of a large and dynamic set of cell-derived phosphorylation sites in a single proteomics experiment is an impressive accomplishment, understanding which of these sites participate in a given signaling pathway and the nature of this participation is the fundamental challenge confronting the proteomics researcher. It is simply not feasible to make hundreds of site-directed mutants and the associated knockout mice with current methodologies within a single lab in a reasonable amount of time. Therefore, complimentary high-throughput follow-up strategies must be developed to ascertain whether newly discovered phosphorylation sites participate in pathways and the nature of this participation. Our new approach streamlines the usual signaling pathway analysis paradigm by allowing for the production of mutants of phosphorylation sites and signaling proteins shown to exist within cells as opposed to the usual motif-driven site-directed mutagenesis approach. Also, phosphoproteomic characterization of perturbations of global phosphorylation patterns in mutant cells will likely provide a useful perspective on signaling pathways and ultimately a more rapid understanding of the molecular basis of a wide array of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 210.99
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

7. References

  1. S. P. Gygi, Y. Rochon, B. R. Franza, and R. Aebersold, Correlation between protein and mRNA abundance in yeast, Mol Cell Biol 19(3), 1720–1730 (1999).

    PubMed  CAS  Google Scholar 

  2. M. P. Washburn, D. Wolters, and J. R. Yates, 3rd, Large-scale analysis of the yeast proteome by multidimensional protein identification technology, Nat Biotechnol 19(3), 242–247 (2001).

    Article  PubMed  CAS  Google Scholar 

  3. S. A. Beausoleil, M. Jedrychowski, D. Schwartz, J. E. Elias, J. Villen, J. Li, M. A. Cohn, L. C. Cantley, and S. P. Gygi, Large-scale characterization of HeLa cell nuclear phosphoproteins, Proc Natl Acad Sci USA 101(33), 12130–12135 (2004).

    Article  PubMed  CAS  Google Scholar 

  4. M. Mann, and O. N. Jensen, Proteomic analysis of post-translational modifications, Nat Biotechnol 21(3), 255–261 (2003).

    Article  PubMed  CAS  Google Scholar 

  5. J. E. Syka, J. J. Coon, M. J. Schroeder, J. Shabanowitz, and D. F. Hunt, Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry, Proc Natl Acad Sci U S A 101(26), 9528–9533 (2004).

    Article  PubMed  CAS  Google Scholar 

  6. L. M. Brill, A. R. Salomon, S. B. Ficarro, M. Mukherji, M. Stettler-Gill, and E. C. Peters, Robust phosphoproteomic profiling of tyrosine phosphorylation sites from human T cells using immobilized metal affinity chromatography and tandem mass spectrometry, Anal Chem 76(10), 2763–2772 (2004).

    Article  PubMed  CAS  Google Scholar 

  7. S. B. Ficarro, A. R. Salomon, L. M. Brill, D. E. Mason, M. Stettler-Gill, A. Brock, and E. C. Peters, Automated immobilized metal affinity chromatography/nanoliquid chromatography/electrospray ionization mass spectrometry platform for profiling protein phosphorylation sites, Rapid Commun Mass Spectrom 19(1), 57–71 (2005).

    Article  PubMed  CAS  Google Scholar 

  8. M. J. MacCoss, C. C. Wu, and J. R. Yates, 3rd, Probability-based validation of protein identifications using a modified SEQUEST algorithm, Anal Chem 74(21), 5593–5599 (2002).

    Article  PubMed  CAS  Google Scholar 

  9. Y. Oda, T. Nagasu, and B. Chait, Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome, Nature Biotechnology 19, 379–382 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. M. C. Posewitz, and P. Tempst, Immobilized gallium(III) affinity chromatography of phosphopeptides, Anal Chem 71(14), 2883–2892 (1999).

    Article  PubMed  CAS  Google Scholar 

  11. S. B. Ficarro, M. L. McCleland, P. T. Stukenberg, D. J. Burke, M. M. Ross, J. Shabanowitz, D. F. Hunt, and F. M. White, Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae, Nat Biotechnol 20(3), 301–305 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. D. C. Neville, C. R. Rozanas, E. M. Price, D. B. Gruis, A. S. Verkman, and R. R. Townsend, Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry, Protein Sci 6(11), 2436–2445 (1997).

    Article  PubMed  CAS  Google Scholar 

  13. A. Stensballe, S. Andersen, and O. N. Jensen, Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(III) affinity chromatography with off-line mass spectrometry analysis, Proteomics 1(2), 207–222 (2001).

    Article  PubMed  CAS  Google Scholar 

  14. A. R. Salomon, S. B. Ficarro, L. M. Brill, A. Brinker, Q. T. Phung, C. Ericson, K. Sauer, A. Brock, D. M. Horn, P. G. Schultz, and E. C. Peters, Profiling of tyrosine phosphorylation pathways in human cells using mass spectrometry, Proc Natl Acad Sci U S A 100(2), 443–448 (2003).

    Article  PubMed  CAS  Google Scholar 

  15. Y. Zhang, A. Wolf-Yadlin, P. L. Ross, D. J. Pappin, J. Rush, D. A. Lauffenburger, and F. M. White, Time-resolved Mass Spectrometry of Tyrosine Phosphorylation Sites in the Epidermal Growth Factor Receptor Signaling Network Reveals Dynamic Modules, Mol Cell Proteomics 4(9), 1240–1250 (2005).

    Article  PubMed  CAS  Google Scholar 

  16. S. Peri, J. D. Navarro, R. Amanchy, T. Z. Kristiansen, C. K. Jonnalagadda, V. Surendranath, V. Niranjan, B. Muthusamy, T. K. Gandhi, M. Gronborg, N. Ibarrola, N. Deshpande, K. Shanker, H. N. Shivashankar, B. P. Rashmi, M. A. Ramya, Z. Zhao, K. N. Chandrika, N. Padma, H. C. Harsha, A. J. Yatish, M. P. Kavitha, M. Menezes, D. R. Choudhury, S. Suresh, N. Ghosh, R. Saravana, S. Chandran, S. Krishna, M. Joy, S. K. Anand, V. Madavan, A. Joseph, G. W. Wong, W. P. Schiemann, S. N. Constantinescu, L. Huang, R. Khosravi-Far, H. Steen, M. Tewari, S. Ghaffari, G. C. Blobe, C. V. Dang, J. G. Garcia, J. Pevsner, O. N. Jensen, P. Roepstorff, K. S. Deshpande, A. M. Chinnaiyan, A. Hamosh, A. Chakravarti, and A. Pandey, Development of human protein reference database as an initial platform for approaching systems biology in humans, Genome Res 13(10), 2363–2371 (2003).

    Article  PubMed  CAS  Google Scholar 

  17. H. Steen, B. Kuster, M. Fernandez, A. Pandey, and M. Mann, Tyrosine phosphorylation map** of the epidermal growth factor receptor signaling pathway, J Biol Chem 277(2), 1031–1039 (2002).

    Article  PubMed  CAS  Google Scholar 

  18. I. de Aos, M. H. Metzger, M. Exley, C. E. Dahl, S. Misra, D. Zheng, L. Varticovski, C. Terhorst, and J. Sancho, Tyrosine phosphorylation of the CD3-epsilon subunit of the T cell antigen receptor mediates enhanced association with phosphatidylinositol 3-kinase in Jurkat T cells, J Biol Chem 272(40), 25310–25318 (1997).

    Article  PubMed  Google Scholar 

  19. E. N. Kersh, A. S. Shaw, and P. M. Allen, Fidelity of T cell activation through multistep T cell receptor zeta phosphorylation, Science 281(5376), 572–575 (1998).

    Article  PubMed  CAS  Google Scholar 

  20. J. M. Vila, I. Gimferrer, O. Padilla, M. Arman, L. Places, M. Simarro, J. Vives, and F. Lozano, Residues Y429 and Y463 of the human CD5 are targeted by protein tyrosine kinases, Eur J Immunol 31(4), 1191–1198 (2001).

    Article  PubMed  CAS  Google Scholar 

  21. D. D. Schlaepfer, C. R. Hauck, and D. J. Sieg, Signaling through focal adhesion kinase, Prog Biophys Mol Biol 71(3–4), 435–478 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. J. D. Watts, M. Affolter, D. L. Krebs, R. L. Wange, L. E. Samelson, and R. Aebersold, Identification by electrospray ionization mass spectrometry of the sites of tyrosine phosphorylation induced in activated Jurkat T cells on the protein tyrosine kinase ZAP-70, J Biol Chem 269(47), 29520–29529 (1994).

    PubMed  CAS  Google Scholar 

  23. V. Di Bartolo, D. Mege, V. Germain, M. Pelosi, E. Dufour, F. Michel, G. Magistrelli, A. Isacchi, and O. Acuto, Tyrosine 319, a newly identified phosphorylation site of ZAP-70, plays a critical role in T cell antigen receptor signaling, J Biol Chem 274(10), 6285–6294 (1999).

    Article  PubMed  Google Scholar 

  24. A. C. Chan, M. Dalton, R. Johnson, G. H. Kong, T. Wang, R. Thoma, and T. Kurosaki, Activation of ZAP-70 kinase activity by phosphorylation of tyrosine 493 is required for lymphocyte antigen receptor function, Embo J 14(11), 2499–2508 (1995).

    PubMed  CAS  Google Scholar 

  25. H. Kanda, T. Mimura, K. Hamasaki, K. Yamamoto, Y. Yazaki, H. Hirai, and Y. Nojima, Fyn and Lck tyrosine kinases regulate tyrosine phosphorylation of p105CasL, a member of the p130Cas docking protein family, in T-cell receptormediated signalling, Immunology 97(1), 56–61 (1999).

    Article  PubMed  CAS  Google Scholar 

  26. J. E. Hutchcroft, J. M. Slavik, H. Lin, T. Watanabe, and B. E. Bierer, Uncoupling activation-dependent HS1 phosphorylation from nuclear factor of activated T cells transcriptional activation in Jurkat T cells: differential signaling through CD3 and the costimulatory receptors CD2 and CD28, J Immunol 161(9), 4506–4512 (1998).

    PubMed  CAS  Google Scholar 

  27. M. Ruzzene, A. M. Brunati, O. Marin, A. Donella-Deana, and L. A. Pinna, SH2 domains mediate the sequential phosphorylation of HS1 protein by p72syk and Srcrelated protein tyrosine kinases, Biochemistry 35(16), 5327–5332 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Cao, L., Yu, K., Salomon, A.R. (2006). Phosphoproteomic Analysis of Lymphocyte Signaling. In: Tsoukas, C. (eds) Lymphocyte Signal Transduction. Advances in Experimental Medicine and Biology, vol 584. Springer, Boston, MA. https://doi.org/10.1007/0-387-34132-3_19

Download citation

Publish with us

Policies and ethics

Navigation