Matrix Metalloproteases and Epithelial-to-Mesenchymal Transition

Implications for Carcinoma Metastasis

  • Chapter
Rise and Fall of Epithelial Phenotype

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

The epithelial to mesenchymal transition (EMT) is characterized by the loss of epithelial characteristics and the gain of mesenchymal attributes in epithelial cells. It has been associated with physiological and pathological processes requiring epithelial cell migration and invasion. Initially, EMT was observed in embryological and adult development with many well characterized examples including the conversions of epiblast to primary mesenchyme (gastrulation), somite to sderotome, somite to dermis, myotome to migratory myoblast, dorsal neural tube to neural crest, placodal ectoderm to cranial ganglion precursor, intermediate mesoderm to nephric mesenchyme, lateral mesoderm to connective/muscular tissue, endocardium to cardiac cushion mesenchyme and trophectoderm invasion.[1],[2] In addition, evidence is mounting to support an important role of EMT pathways in the progression of carcinoma to metastasis providing epithelial tumour cells with the ability to migrate, invade the surrounding stroma and disseminate in secondary organs.[3]–[5]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hay ED, Zuk A. Transformations between epithelium and mesenchyme: normal, pathological, and experimentally induced. Am J Kidney Dis 1995; 26(4):678–690.

    PubMed  CAS  Google Scholar 

  2. Duband JL, Monier F, Delannet M et al. Epithelium-mesenchyme transition during neural crest development. Acta Anat 1995; 154(1):63–78.

    PubMed  CAS  Google Scholar 

  3. Birchmeier C, Birchmeier W, Brand-Saberi B. Epithelial-mesenchymal transitions in cancer progression. Acta Anat 1996; 156(3):217–226.

    PubMed  CAS  Google Scholar 

  4. Thiery JP. Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 2003; 15(6):740–746.

    PubMed  CAS  Google Scholar 

  5. Gotzmann J, Mikula M, Eger A et al. Molecular aspects of epithelial cell plasticity: implications for local tumour invasion and metastasis. Mutat Res 2004; 566(1):9–20.

    PubMed  CAS  Google Scholar 

  6. Hay ED. An overview of epithelio-mesenchymal transformation. Acta Anat 1995; 154(1):8–20.

    PubMed  CAS  Google Scholar 

  7. Viebahn C, Lane EB, Ramaekers FC. Keratin and vimentin expression in early organogenesis of the rabbit embryo. Cell Tissue Res 1988; 253(3):553–562.

    PubMed  CAS  Google Scholar 

  8. Erickson CA, Tucker RP, Edwards BF. Changes in the distribution of intermediate-filament types in Japanese quail embryos during morphogenesis. Differentiation 1987; 34(2):88–97.

    PubMed  CAS  Google Scholar 

  9. Boyer B, Valles AM, Edme N. Induction and regulation of epithelial-mesenchymal transitions. Biochem Pharmacol 2000; 60(8):1091–1099.

    PubMed  CAS  Google Scholar 

  10. Reichert M, Muller T, Hunziker W. The PDZ domains of zonula occludens-1 induce an epithelial to mesenchymal transition of Madin-Darby canine kidney I cells. Evidence for a role of beta-catenin/Tcf/Lef signaling. J Biol Chem 2000; 275(13):9492–9500.

    PubMed  CAS  Google Scholar 

  11. Tucker GC, Boyer B, Gavrilovic J et al. Collagen-mediated dispersion of NBT-II rat bladder carcinoma cells. Cancer Res 1990; 50(1):129–137.

    PubMed  CAS  Google Scholar 

  12. Lochter A, Galosy S, Muschler J et al. Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J Cell Biol 1997; 139:1861–1872.

    PubMed  CAS  Google Scholar 

  13. Batlle E, Sancho E, Franci C et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2000; 2(2):84–89.

    PubMed  CAS  Google Scholar 

  14. Cano A, Perez-Moreno MA, Rodrigo I et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000; 2(2):76–83.

    PubMed  CAS  Google Scholar 

  15. Savagner P, Yamada KM, Thiery JP. The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J Cell Biol 1997; 137(6):1403–1419.

    PubMed  CAS  Google Scholar 

  16. Savagner P. Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays 2001; 23(10):912–923.

    PubMed  CAS  Google Scholar 

  17. Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 2002; 3(3):155–166.

    PubMed  CAS  Google Scholar 

  18. Oikawa T, Yamada T. Molecular biology of the Ets family of transcription factors. Gene 2003; 303:11–34.

    PubMed  CAS  Google Scholar 

  19. Comijn J, Berx G, Vermassen P et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 2001; 7(6):1267–1278.

    PubMed  CAS  Google Scholar 

  20. Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 2003; 1653(1):1–24.

    PubMed  CAS  Google Scholar 

  21. Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 2001; 17:463–516.

    PubMed  CAS  Google Scholar 

  22. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002; 2(3):161–174.

    PubMed  CAS  Google Scholar 

  23. Benaud C, Dickson RB, Thompson EW. Roles of the matrix metalloproteinases in mammary gland development and cancer. Breast Cancer Res Treat 1998; 50(2):97–116.

    PubMed  CAS  Google Scholar 

  24. Lafleur MA, Handsley MM, Edwards DR. Metalloproteinases and their inhibitors in angiogenesis. Expert Rev Mol Med 2003; 5:1–39.

    PubMed  Google Scholar 

  25. Noe V, Fingleton B, Jacobs K et al. Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci 2001; H4 (Pt 1):111–118.

    Google Scholar 

  26. Kajita M, Itoh Y, Chiba T et al. Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol 2001; 153(5):893–904.

    PubMed  CAS  Google Scholar 

  27. Deryugina EI, Ratnikov B, Monosov E et al. MT1-MMP initiates activation of pro-MMP-2 and integrin alphavbeta3 promotes maturation of MMP-2 in breast carcinoma cells. Exp Cell Res 2001; 263(2):209–223.

    PubMed  CAS  Google Scholar 

  28. Codony-Servat J, Albanell J, Lopez-Talavera JC et al. Cleavage of the HER2 ectodomain is a pervanadate-activable process that is inhibited by the tissue inhibitor of metalloproteases-1 in breast cancer cells. Cancer Res 1999; 59(6):1196–1201.

    PubMed  CAS  Google Scholar 

  29. Vecchi M, Rudolph-Owen LA, Brown CL et al. Tyrosine phosphorylation and proteolysis. Pervanadate-induced, metalloprotease-dependent cleavage of the ErbB-4 receptor and amphiregulin. J Biol Chem 1998; 273(32):20589–20595.

    PubMed  CAS  Google Scholar 

  30. Nath D, Williamson NJ, Jarvis R et al. Shedding of c-Met is regulated by crosstalk between a G-protein coupled receptor and the EGF receptor and is mediated by a TIMP-3 sensitive metalloproteinase. J Cell Sci 2001; H4 (Pt 6):1213–1220.

    Google Scholar 

  31. Barsky SH, Siegal GP, Jannotta F et al. Loss of basement membrane components by invasive tumours but not by their benign counterparts. Lab Invest 1983; 49(2):140–147.

    PubMed  CAS  Google Scholar 

  32. Woodhouse EC, Chuaqui RF, Liotta LA. General mechanisms of metastasis. Cancer 1997; 80(8 Suppl):1529–1537.

    PubMed  CAS  Google Scholar 

  33. Nelson AR, Fingleton B, Rothenberg ML et al. Matrix Metalloproteinases: Biologic Activity and Clinical Implications. J Clin Oncol 2000; 18(5):1135.

    PubMed  CAS  Google Scholar 

  34. Zucker S, Pei D, Cao J et al. Membrane type-matrix metalloproteinases (MT-MMP). Curr Top Dev Biol 2003; 54:1–74.

    PubMed  CAS  Google Scholar 

  35. English WR, Puente XS, Freije JM et al. Membrane type 4 matrix metalloproteinase (MMP17) has tumour necrosis factor-alpha convertase activity but does not activate pro-MMP2. J Biol Chem 2000; 275(19):14046–14055.

    PubMed  CAS  Google Scholar 

  36. Sato H, Takino T, Okada Y et al. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 1994; 370(6484):61–65.

    PubMed  CAS  Google Scholar 

  37. Seiki M, Mori H, Kajita M et al. Membrane-type 1 matrix metalloproteinase and cell migration. Biochem Soc Symp 2003 (70):253–262.

    PubMed  CAS  Google Scholar 

  38. Hotary K, Allen E, Punturieri A et al. Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3. J Cell Biol 2000; 149(6):1309–1323.

    PubMed  CAS  Google Scholar 

  39. Wilson CL, Matrisian LM. Matrilysin: an epithelial matrix metalloproteinase with potentially novel functions. Int J Biochem Cell Biol 1996; 28(2):123–136.

    PubMed  CAS  Google Scholar 

  40. Almholt K, Johnsen M. Stromal cell involvement in cancer. Recent Results Cancer Res 2003; 162:31–42.

    PubMed  CAS  Google Scholar 

  41. Janda E, Lehmann K, Killisch I et al. Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol 2002; 156(2):299–313.

    PubMed  CAS  Google Scholar 

  42. Nabeshima K, Inoue T, Shimao Y et al. Matrix metalloproteinases in tumour invasion: role for cell migration. Pathol Int 2002; 52(4):255–264.

    PubMed  CAS  Google Scholar 

  43. Kulesa P, Ellies DL, Trainor PA. Comparative analysis of neural crest cell death, migration, and function during vertebrate embryogenesis. Dev Dyn 2004; 229(1):14–29.

    PubMed  CAS  Google Scholar 

  44. Savagner P, Valles AM, Jouanneau J et al. Alternative splicing in fibroblast growth factor receptor 2 is associated with induced epithelial-mesenchymal transition in rat bladder carcinoma cells. Mol Biol Cell 1994; 5(8):851–862.

    PubMed  CAS  Google Scholar 

  45. Gavrilovic J, Moens G, Thiery JP et al. Expression of transfected transforming growth factor alpha induces a motile fibroblast-like phenotype with extracellular matrix-degrading potential in a rat bladder carcinoma cell line. Cell Regul 1990; 1(13):1003–1014.

    PubMed  CAS  Google Scholar 

  46. Jouanneau J, Gavrilovic J, Caruelle D et al. Secreted or nonsecreted forms of acidic fibroblast growth factor produced by transfected epithelial cells influence cell morphology, motility, and in vasive potential. Proc Natl Acad Sci USA 1991; 88(7):2893–2897.

    PubMed  CAS  Google Scholar 

  47. Bae SN, Arand G, Azzam H et al. Molecular and cellular analysis of basement membrane invasion by human breast cancer cells in Matrigel-based in vitro assays. Breast Cancer Res Treat 1993; 24(3):241–255.

    PubMed  CAS  Google Scholar 

  48. Gilles CT. The epithelial to mesenchymal transition and metastatic progression in carcinoma. The Breast J 1996; 2(2):83–96.

    Google Scholar 

  49. Sommers CL, Thompson EW, Torri JA et al. Cell adhesion molecule uvomorulin expression in human breast cancer cell lines: relationship to morphology and invasive capacities. Cell Growth Differ 1991; 2(8):365–372.

    PubMed  CAS  Google Scholar 

  50. Sommers CL, Heckford SE, Skerker JM et al. Loss of epithelial markers and acquisition of vimentin expression in adriamycin-and vinblastine-resistant human breast cancer cell lines. Cancer Res 1992; 52(19):5190–5197.

    PubMed  CAS  Google Scholar 

  51. Thompson EW, Paik S, Brunner N et al. Association of increased basement membrane invasive-ness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. J Cell Physiol 1992; 150(3):534–544.

    PubMed  CAS  Google Scholar 

  52. Sommers CL, Byers SW, Thompson EW et al. Differentiation state and invasiveness of human breast cancer cell lines. Breast Cancer Res Treat 1994; 31(2–3):325–335.

    PubMed  CAS  Google Scholar 

  53. Nawrocki Raby B, Polette M, Gilles C et al. Quantitative cell dispersion analysis: new test to measure tumour cell aggressiveness. Int J Cancer 2001; 93(5):644–652.

    PubMed  CAS  Google Scholar 

  54. Gilles C, Polette M, Birembaut P et al. Expression of c-ets-1 mRNA is associated with an invasive, EMT-derived phenotype in breast carcinoma cell lines. Clin Exp Metastasis 1997; 15(5):519–526.

    PubMed  CAS  Google Scholar 

  55. Azzam HS, Arand G, Lippman ME et al. Association of MMP-2 activation potential with metastatic progression in human breast cancer cell lines independent of MMP-2 production. J Natl Cancer Inst 1993; 85(21):1758–1764.

    PubMed  CAS  Google Scholar 

  56. Pulyaeva H, Bueno J, Polette M et al. MT1-MMP correlates with MMP-2 activation potential seen after epithelial to mesenchymal transition in human breast carcinoma cells [published erratum appears in Clin Exp Metastasis 1997; 15(3):338]. Clin Exp Metastasis 1997; 15(2):111–120.

    PubMed  CAS  Google Scholar 

  57. Gilles C, Polette M, Seiki M et al. Implication of collagen type I-induced membrane-type 1-matrix metalloproteinase expression and matrix metalloproteinase-2 activation in the metastatic progression of breast carcinoma. Lab Invest 1997; 76:651–660.

    PubMed  CAS  Google Scholar 

  58. Giambernardi TA, Grant GM, Taylor GP et al. Overview of matrix metalloproteinase expression in cultured human cells. Matrix Biol 1998; 16(8):483–496.

    PubMed  CAS  Google Scholar 

  59. Grant GM, Giambernardi TA, Grant AM et al. Overview of expression of matrix metalloproteinases (MMP-17, MMP-18, and MMP-20) in cultured human cells. Matrix Biol 1999; 18(2):145–148.

    PubMed  CAS  Google Scholar 

  60. Zajchowski DA, Bartholdi MF, Gong Y et al. Identification of gene expression profiles that predict the aggressive behavior of breast cancer cells. Cancer Res 2001; 61(13):5168–5178.

    PubMed  CAS  Google Scholar 

  61. Jechlinger M, Grunert S, Tamir IH et al. Expression profiling of epithelial plasticity in tumour progression. Oncogene 2003; 22(46):7155–7169.

    PubMed  CAS  Google Scholar 

  62. Thompson EW, Torri J, Sabol M et al. Oncogene-induced basement membrane invasiveness in human mammary epithelial cells. Clin Exp Metastasis 1994; 12(3):181–194.

    PubMed  CAS  Google Scholar 

  63. Giunciuglio D, Culty M, Fassina G et al. Invasive phenotype of MCF10A cells overexpressing c-Ha-ras and c-erbB-2 oncogenes. Int J Cancer 1995; 63(6):815–822.

    PubMed  CAS  Google Scholar 

  64. Gilles C, Polette M, Zahm J et al. Vimentin contributes to human mammary epithelial cell migration [In Process Citation]. J Cell Sci 1999; 112 (Pt 24):4615–4625.

    PubMed  CAS  Google Scholar 

  65. Gilles C, Polette M, Mestdagt M et al. Transactivation of vimentin by beta-catenin in human breast cancer cells. Cancer Res 2003; 63(10):2658–2664.

    PubMed  CAS  Google Scholar 

  66. Gilles C, Polette M, Coraux C et al. Contribution of MT1-MMP and of human laminin-5 gamma2 chain degradation to mammary epithelial cell migration. J Cell Sci 2001; 114 (Pt l6):2967–2976.

    PubMed  CAS  Google Scholar 

  67. Sternlicht MD, Lochter A, Sympson CJ et al. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 1999; 98(2): 137–146.

    PubMed  CAS  Google Scholar 

  68. Uria JA, Werb Z. Matrix metalloproteinases and their expression in mammary gland. Cell Res 1998; 8(3):187–194.

    PubMed  CAS  Google Scholar 

  69. Witty JP, Wright JH, Matrisian LM. Matrix metalloproteinases are expressed during ductal and alveolar mammary morphogenesis, and misregulation of stromelysin-1 in transgenic mice induces unscheduled alveolar development. Mol Biol Cell 1995; 6(10):1287–1303.

    PubMed  CAS  Google Scholar 

  70. Sternlicht MD, Bissell MJ, Werb Z. The matrix metalloproteinase stromelysin-1 acts as a natural mammary tumour promoter. Oncogene 2000; 19(8):1102–1113.

    PubMed  CAS  Google Scholar 

  71. Lochter A, Srebrow A, Sympson CJ et al. Misregulation of stromelysin-1 expression in mouse mammary tumour cells accompanies acquisition of stromelysin-1-dependent invasive properties. J Biol Chem 1997; 272(8):5007–5015.

    PubMed  CAS  Google Scholar 

  72. Lochter A, Werb Z, Bissell MJ. Transcriptional regulation of stromelysin-1 gene expression is altered during progression of mouse mammary epithelial cells from functionally normal to malignant. Matrix Biol 1999; 18(5):455–467.

    PubMed  CAS  Google Scholar 

  73. Heppner KJ, Matrisian LM, Jensen RA et al. Expression of most matrix metalloproteinase family members in breast cancer represents a tumour-induced host response. Am J Pathol 1996; l49(1):273–282.

    Google Scholar 

  74. Miettinen PJ, Ebner R, Lopez AR et al. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 1994; 127(6 Pt 2):2021–2036.

    PubMed  CAS  Google Scholar 

  75. Piek E, Moustakas A, Kurisaki A et al. TGF-β type I receptor/ALK-5 and smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells [In Process Cita tion]. J Cell Sci 1999; 112 (Pt 24):4557–4568.

    PubMed  CAS  Google Scholar 

  76. Lelekakis M, Moseley JM, Martin TJ et al. A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis 1999; 17(2): 163–170.

    PubMed  CAS  Google Scholar 

  77. Tester AM, Ruangpanit N, Anderson RL et al. MMP-9 secretion and MMP-2 activation distinguish invasive and metastatic sublines of a mouse mammary carcinoma system showing epithelial-mesenchymal transition traits. Clin Exp Metastasis 2000; 18(7):553–560.

    PubMed  CAS  Google Scholar 

  78. Martorana AM, Zheng G, Crowe TC et al. Epithelial cells up-regulate matrix metalloproteinases in cells within the same mammary carcinoma that have undergone an epithelial-mesenchymal transition. Cancer Res 1998; 58(21):4970–4979.

    PubMed  CAS  Google Scholar 

  79. Polette M, Gilles C, de Bentzmann S et al. Association of fibroblastoid features with the invasive phenotype in human bronchial cancer cell lines. Clin Exp Metastasis 1998; 16(2):105–112.

    PubMed  CAS  Google Scholar 

  80. Nawrocki-Raby B, Gilles C, Polette M et al. E-Cadherin mediates MMP down-regulation in highly invasive bronchial tumour cells. Am J Pathol 2003; 163(2):653–661.

    PubMed  CAS  Google Scholar 

  81. Jung M, Romer A, Keyszer G et al. mRNA expression of the five membrane-type matrix metalloproteinases MT1-MT5 in human prostatic cell lines and their down-regulation in human malignant prostatic tissue. Prostate 2003; 55(2):89–98.

    PubMed  CAS  Google Scholar 

  82. Daja MM, Niu X, Zhao Z et al. Characterization of expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in prostate cancer cell lines. Prostate Cancer Prostatic Dis 2003; 6(1):15–26.

    PubMed  CAS  Google Scholar 

  83. Gilles C, Piette J, Peter W et al. Differentiation ability and oncogenic potential of HPV-33-and HPV-33 + ras-transfected keratinocytes. Int J Cancer 1994; 58(6):847–854.

    PubMed  CAS  Google Scholar 

  84. Gilles C, Polette M, Piette J et al. Epithelial-to-mesenchymal transition in HPV-33-transfected cervical keratinocytes is associated with increased invasiveness and expression of gelatinase A. Int J Cancer 1994; 59(5):661–666.

    PubMed  CAS  Google Scholar 

  85. Yokoyama K, Kamata N, Fujimoto R et al. Increased invasion and matrix metalloproteinase-2 expression by Snail-induced mesenchymal transition in squamous cell carcinomas. Int J Oncol Apr 2003; 22(4):891–898.

    CAS  Google Scholar 

  86. Polette M, Nawrocki-Raby B, Gilles C et al. Tumour Invasion and Matrix Metalloproteases. 2004; In press.

    Google Scholar 

  87. Gilles C, Polette M, Piette J et al. High level of MT-MMP expression is associated with invasiveness of cervical cancer cells. Int J Cancer 1996; 65(2):209–213.

    PubMed  CAS  Google Scholar 

  88. Polette M, Nawrocki B, Gilles C et al. MT-MMP expression and localisation in human lung and breast cancers. Virchows Arch 1996; 428(1):29–35.

    PubMed  CAS  Google Scholar 

  89. Yamamura T, Nakanishi K, Hiroi S et al. Expression of membrane-type-1-matrix metalloproteinase and metalloproteinase-2 in nonsmall cell lung carcinomas. Lung Cancer 2002; 35(3):249–255.

    PubMed  Google Scholar 

  90. Trudel D, Fradet Y, Meyer F et al. Significance of MMP-2 expression in prostate cancer: an immunohistochemical study. Cancer Res 2003; 63(23):8511–8515.

    PubMed  CAS  Google Scholar 

  91. Kikuchi R, Noguchi T, Takeno S et al. Immunohistochemical detection of membrane-type-1-matrix metalloproteinase in colorectal carcinoma. Br J Cancer 2000; 83(2):215–218.

    PubMed  CAS  Google Scholar 

  92. Ohtani H, Motohashi H, Sato H et al. Dual over-expression pattern of membrane-type metalloproteinase-1 in cancer and stromal cells in human gastrointestinal carcinoma revealed by in situ hybridization and immunoelectron microscopy. Int J Cancer 1996; 68(5):565–570.

    PubMed  CAS  Google Scholar 

  93. Etoh T, Inoue H, Yoshikawa Y et al. Increased expression of collagenase-3 (MMP-13) and MT1-MMP in oesophageal cancer is related to cancer aggressiveness. Gut 2000; 47(1):50–56.

    PubMed  CAS  Google Scholar 

  94. Ohashi K, Nemoto T, Nakamura K et al. Increased expression of matrix metalloproteinase 7 and 9 and membrane type 1-matrix metalloproteinase in esophageal squamous cell carcinomas. Cancer 2000; 88(10):2201–2209.

    PubMed  CAS  Google Scholar 

  95. Cazorla M, Hernandez L, Nadal A et al. Collagenase-3 expression is associated with advanced local invasion in human squamous cell carcinomas of the larynx. J Pathol 1998; 186(2):144–150.

    PubMed  CAS  Google Scholar 

  96. Ueno H, Nakamura H, Inoue M et al. Expression and tissue localization of membrane-types 1, 2, and 3 matrix metalloproteinases in human invasive breast carcinomas. Cancer Res 1997; 57(10):2055–2060.

    PubMed  CAS  Google Scholar 

  97. Ishigaki S, Toi M, Ueno T et al. Significance of membrane type 1 matrix metalloproteinase ex pression in breast cancer. Jpn J Cancer Res 1999; 90(5):516–522.

    PubMed  CAS  Google Scholar 

  98. Nakamura H, Ueno H, Yamashita K et al. Enhanced production and activation of progelatinase A mediated by membrane-type 1 matrix metalloproteinase in human papillary thyroid carcinomas. Cancer Res 1999; 59(2):467–473.

    PubMed  CAS  Google Scholar 

  99. Davidson B, Goldberg I, Gotlieb WH et al. High levels of MMP-2, MMP-9, MT1-MMP and TIMP-2 mRNA correlate with poor survival in ovarian carcinoma. Clin Exp Metastasis 1999; 17(10):799–808.

    PubMed  CAS  Google Scholar 

  100. Davidson B, Goldberg I, Berner A et al. Expression of membrane-type 1, 2, and 3 matrix metalloproteinases messenger RNA in ovarian carcinoma cells in serous effusions. Am J Clin Pathol 2001; 115(4):517–524.

    PubMed  CAS  Google Scholar 

  101. Imanishi Y, Fujii M, Tokumaru Y et al. Clinical significance of expression of membrane type 1 matrix metalloproteinase and matrix metalloproteinase-2 in human head and neck squamous cell carcinoma. Hum Pathol 2000; 31(8):895–904.

    PubMed  CAS  Google Scholar 

  102. Maatta M, Soini Y, Liakka A et al. Differential expression of matrix metalloproteinase (MMP)-2, MMP-9, and membrane type 1-MMP in hepatocellular and pancreatic adenocarcinoma: implications for tumour progression and clinical prognosis. Clin Cancer Res 2000; 6(7):2726–2734.

    PubMed  CAS  Google Scholar 

  103. Ahmad A, Hanby A, Dublin E et al. Stromelysin 3: an independent prognostic factor for relapse-free survival in node-positive breast cancer and demonstration of novel breast carcinoma cell expression. Am J Pathol 1998; 152(3):721–728.

    PubMed  CAS  Google Scholar 

  104. Wright JH, McDonnell S, Portella G, et al. A switch from stromal to tumour cell expression of stromelysin-1 mrna associated with the conversion of squamous to spindle carcinomas during mouse skin tumour progression. Mol Carcinog 1994; 10(4):207–215.

    PubMed  CAS  Google Scholar 

  105. Kadono Y, Shibahara K, Namiki M et al. Membrane type 1-matrix metalloproteinase is involved in the formation of hepatocyte growth factor/scatter factor-induced branching tubules in madin-darby canine kidney epithelial cells. Biochem Biophys Res Commun 1998; 251(3):681–687.

    PubMed  CAS  Google Scholar 

  106. Kadono Y, Okada Y, Namiki M et al. Transformation of epithelial Madin-Darby canine kidney cells with p60(v-src) induces expression of membrane-type 1 matrix metalloproteinase and invasiveness. Cancer Res 1998; 58(10):2240–2244.

    PubMed  CAS  Google Scholar 

  107. Noritake H, Miyamori H, Goto C et al. Overexpression of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) in metastatic MDCK cells transformed by v-src. Clin Exp Metastasis. 1999; 17(2):105–110.

    PubMed  CAS  Google Scholar 

  108. Miyamori H, Hasegawa K, Kim KR et al. Expression of metastasis-associated mts1 gene is co-induced with membrane type-1 matrix metalloproteinase (MT1-MMP) during oncogenic transformation and tubular formation of Madin Darby canine kidney (MDCK) epithelial cells. Clin Exp Metastasis 2000; 18(1):51–56.

    PubMed  CAS  Google Scholar 

  109. Lelongt B, Trugnan G, Murphy G et al. Matrix metalloproteinases MMP2 and MMP9 are produced in early stages of kidney morphogenesis but only MMP9 is required for renal organogenesis in vitro. J Cell Biol 1997; 136(6):1363–1373.

    PubMed  CAS  Google Scholar 

  110. Li Y, Yang J, Dai C et al. Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. J Clin Invest 2003; 112(4):503–516.

    PubMed  CAS  Google Scholar 

  111. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 2003; 112(12):1776–1784.

    PubMed  CAS  Google Scholar 

  112. Cheng S, Lovett DH. Gelatinase A (MMP-2) is necessary and sufficient for renal tubular cell epithelial-mesenchymal transformation. Am J Pathol 2003; 162(6):1937–1949.

    PubMed  CAS  Google Scholar 

  113. Buisson AC, Zahm JM, Polette M et al. Gelatinase B is involved in the in vitro wound repair of human respiratory epithelium. J Cell Physiol 1996; 166(2):413–426.

    PubMed  CAS  Google Scholar 

  114. Legrand C, Gilles C, Zahm JM et al. Airway epithelial cell migration dynamics. MMP-9 role in cell-extracellular matrix remodeling. J Cell Biol 1999; 146(2):517–529.

    PubMed  CAS  Google Scholar 

  115. Buisson AC, Gilles C, Polette M et al. Wound repair-induced expression of a stromelysins is associated with the acquisition of a mesenchymal phenotype in human respiratory epithelial cells. Lab Invest 1996; 74(3):658–669.

    PubMed  CAS  Google Scholar 

  116. Markwald R, Eisenberg C, Eisenberg L et al. Epithelial-mesenchymal transformations in early avian heart development. Acta Anat 1996; 156(3):173–186.

    Article  PubMed  CAS  Google Scholar 

  117. Alexander SM, Jackson KJ, Bushnell KM et al. Spatial and temporal expression of the 72-kDa type IV collagenase (MMP-2) correlates with development and differentiation of valves in the embryonic avian heart. Dev Dyn 1997; 209(3):261–268.

    PubMed  CAS  Google Scholar 

  118. Cai DH, Vollberg TM Sr., Hahn-Dantona E et al. MMP-2 expression during early avian cardiac and neural crest morphogenesis. Anat Rec 2000; 259(2):168–179.

    PubMed  CAS  Google Scholar 

  119. Duong TD, Erickson CA. MMP-2 plays an essential role in producing epithelial-mesenchymal transformations in the avian embryo. Dev Dyn 2004; 229(1):42–53.

    PubMed  CAS  Google Scholar 

  120. Song W, Jackson K, McGuire PG. Degradation of type IV collagen by matrix metalloproteinases is an important step in the epithelial-mesenchymal transformation of the endocardial cushions. Dev Biol 2000; 227(2):606–617.

    PubMed  CAS  Google Scholar 

  121. Macias D, Perez-Pomares JM, Garcia-Garrido L et al. Immunoreactivity of the ets-1 transcription factor correlates with areas of epithelial-mesenchymal transition in the develo** avian heart. Anat Embryol (Berl) 1998; 198(4):307–315.

    PubMed  CAS  Google Scholar 

  122. Carmona R, Gonzalez-Iriarte M, Macias D et al. Immunolocalization of the transcription factor Slug in the develo** avian heart. Anat Embryol (Berl) 2000; 201(2):103–109.

    PubMed  CAS  Google Scholar 

  123. Vicovac L, Aplin JD. Epithelial-mesenchymal transition during trophoblast differentiation. Acta Anat 1996; 156(3):202–216.

    PubMed  CAS  Google Scholar 

  124. Nawrocki B PM, Maquoi E, Birembaut P. Expression of matrix metalloproteinases and their inhibitors during human placental development. Trophoblast Research 1997; 10:97–113.

    CAS  Google Scholar 

  125. Nawrocki B, Polette M, Marchand V et al. Membrane-type matrix metalloproteinase-1 expression at the site of human placentation. Placenta 1996; 17(8):565–572.

    PubMed  CAS  Google Scholar 

  126. Polette M, Nawrocki B, Pintiaux A et al. Expression of gelatinases A and B and their tissue inhibitors by cells of early and term human placenta and gestational endometrium. Lab Invest 1994; 71(6):838–846.

    PubMed  CAS  Google Scholar 

  127. Librach CL, Werb Z, Fitzgerald ML et al. 92-kD type IV collagenase mediates invasion of human cytotrophoblasts. J Cell Biol 1991; 113(2):437–449.

    PubMed  CAS  Google Scholar 

  128. del Barrio MG, Nieto MA. Overexpression of Snail family members highlights their ability to promote chick neural crest formation. Development 2002; 129(7):1583–1593.

    PubMed  Google Scholar 

  129. Fafeur V, Tulasne D, Queva C et al. The ETS1 transcription factor is expressed during epithelial-mesenchymal transitions in the chick embryo and is activated in scatter factor-stimulated MDCK epithelial cells. Cell Growth Differ 1997; 8(6):655–665.

    PubMed  CAS  Google Scholar 

  130. Giambernardi TA, Sakaguchi AY, Gluhak J et al. Neutrophil collagenase (MMP-8) is expressed during early development in neural crest cells as well as in adult melanoma cells. Matrix Biol 2001; 20(8):577–587.

    PubMed  CAS  Google Scholar 

  131. Cai DH, Brauer PR. Synthetic matrix metalloproteinase inhibitor decreases early cardiac neural crest migration in chicken embryos. Dev Dyn 2002; 224(4):441–449.

    PubMed  CAS  Google Scholar 

  132. Westermarck J, Kahari VM. Regulation of matrix metalloproteinase expression in tumour invasion. Faseb J May 1999; 13(8):781–792.

    CAS  Google Scholar 

  133. Singh S, Barrett J, Sakata K et al. ETS proteins and MMPs: partners in invasion and metastasis. Curr Drug Targets 2002; 3(5):359–367.

    PubMed  CAS  Google Scholar 

  134. Brabletz T, Jung A, Dag S et al. beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol 1999; 155(4):1033–1038.

    PubMed  CAS  Google Scholar 

  135. Crawford HC, Fingleton BM, Rudolph-Owen LA et al. The metalloproteinase matrilysin is a tar get of beta-catenin transactivation in intestinal tumours. Oncogene 1999; 18(18):2883–2891.

    PubMed  CAS  Google Scholar 

  136. Crawford HC, Fingleton B, Gustavson MD et al. The PEA3 subfamily of Ets transcription factors synergizes with beta-catenin-LEF-1 to activate matrilysin transcription in intestinal tumours. Mol Cell Biol 2001; 21(4):1370–1383.

    PubMed  CAS  Google Scholar 

  137. Takahashi M, Tsunoda T, Seiki M et al. Identification of membrane-type matrix metalloproteinase-1 as a target of the beta-catenin/Tcf4 complex in human colorectal cancers. Oncogene 2002;21(38):5861–5867.

    PubMed  CAS  Google Scholar 

  138. Marchenko GN, Marchenko ND, Leng J et al. Promoter characterization of the novel human matrix metalloproteinase-26 gene: regulation by the T-cell factor-4 implies specific expression of the gene in cancer cells of epithelial origin. Biochem J 2002; 363 (Pt 2):253–262.

    PubMed  CAS  Google Scholar 

  139. Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 2002; 295(5564):2387–2392.

    PubMed  CAS  Google Scholar 

  140. Overall CM, Lopez-Otin C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2002; 2(9):657–672.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Gilles, C., Newgreen, D.F., Sato, H., Thompson, E.W. (2005). Matrix Metalloproteases and Epithelial-to-Mesenchymal Transition. In: Rise and Fall of Epithelial Phenotype. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-28671-3_20

Download citation

Publish with us

Policies and ethics

Navigation