Membrane Fusion Events during Nuclear Envelope Assembly

  • Chapter
Fusion of Biological Membranes and Related Problems

Part of the book series: Subcellular Biochemistry ((SCBI,volume 34))

  • 220 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acharya, U., Jacobs, R., Peters, J. M., Watson, N., Farquhar, M. G., and Malhotra, V., 1995a, The formation of Golgi stacks from vesiculated Golgi membranes requires two distinct fusion events, Cell 82:895–904.

    Google Scholar 

  • Acharya, U., and Malhotra, V., 1995b, Reconstitution of Golgi stacks from vesiculated Golgi membranes in permeabilized cells, Cold Spring Harb. Symp. Quant. Biol. 60:559–66 559–566.

    Google Scholar 

  • Aebi, U., Cohn, J., Buhle, L., and Gerace, L., 1986, The nuclear lamina is a meshwork of intermediate-type filaments, Nature 323:560–564.

    Google Scholar 

  • Ashery-Padant, R., Weiss, A. M., Feinstein, N., and Gruenbaum, Y., 1997, Distinct regions specify the targeting of otefin to the nucleoplasmic side of the nuclear envelope, J. Biol. Chem. 272:2493–2499.

    Google Scholar 

  • Bailer, S. M., Eppenberger, H. M., Griffiths, G., and Nigg, E. A., 1991, Characterization of a 54-kD protein of the inner nuclear membrane: evidence for cell cycle-dependent interaction with the nuclear lamina, J. Cell Biol. 114:389–400.

    Google Scholar 

  • Beh, C. T., Brizzio, V., and Rose, M. D., 1997, KARS encodes a novel pheromone-inducible protein required for homotypic nuclear fusion, J. Cell Biol. 139:1063–1076.

    Google Scholar 

  • Berridge, M. J., and Irvine, R. F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature 312:315–321.

    Google Scholar 

  • Berrios, M., and Avilion, A. A., 1990, Nuclear formation in a Drosophila cell-free system, Exp. Cell Res. 191:64–70.

    Google Scholar 

  • Boman, A. L., Delannoy, M., and Wilson, K., 1992, GTP hydrolysis is required for vesicle fusion during nuclear envelope assembly in vitro, J. Cell Biol. 116:281–294.

    Google Scholar 

  • Boman, A. L., Taylor, T. C., Berger, S. J., Melancon, P., and Wilson, K. L., 1996, Purification and mass spectrometric analysis of ADP-ribosylation factor proteins from Xenopus egg cytosol, Biochemistry 35:8244–8251.

    Google Scholar 

  • Boman, A. L., Taylor, T. C., Melancon, P., and Wilson, K. L., 1992, A role for ADP-ribosylation factor in nuclear vesicle dynamics, Nature 358:512–514.

    Google Scholar 

  • Buendia, B., and Courvalin, J.-C., 1997, Domain-specific disassembly and reassembly of nuclear membranes during mitosis, Exp. Cell Res. 230:133–144.

    Google Scholar 

  • Burke, B., 1990, On the cell-free association of lamins A and C with metaphase chromosomes, Exp. Cell Res. 186:169–176.

    Google Scholar 

  • Burke, B., and Gerace, L., 1986, A cell-free system to study reassembly of the nuclear envelope at the end of mitosis, Cell 44:639–652.

    Google Scholar 

  • Cameron, L. A,, and Poccia, D. L., 1994, in vitro development of the sea urchin male pronucleus, Dev. Biol. 162:568–578.

    Google Scholar 

  • Chaudhary, N., and Courvalin, J.-C., 1993, Stepwise reassembly of the nuclear envelope at the end of mitosis, J. Cell Biol. 122:295–306.

    Google Scholar 

  • Collas, P., 1999, Cytoplasmic control of nuclear assembly, Reprod. Fertil. Devel.

    Google Scholar 

  • Collas, P., Courvalin, J.-C., and Poccia, D. L., 1996, Targeting of membranes to sea urchin sperm chromatin is mediated by a lamin B receptor-like integral membrane protein, J. Cell Biol. 135:1715–1725.

    Google Scholar 

  • Collas, P., Pinto-Correia, C., and Poccia, D. L. 1995a, Lamin dynamics during sea urchin male pronuclear formation in vitro, Exp. Cell Res. 219:687–498.

    Google Scholar 

  • Collas, P., and Poccia, D. L., 1995b, Formation of the sea urchin male pronucleus in vitro: membrane-independent chromatin decondensation and nuclear envelope-dependent nuclear swelling, Mol. Reprod. Devel. 42:106–113.

    Google Scholar 

  • Collas, P., and Poccia, D. L., 1995c, Lipophilic structures of sperm nuclei target membrane vesicle binding and are incorporated into the nuclear envelope, Dev. Biol. 169:123–135.

    Google Scholar 

  • Collas, P., and Poccia, D. L., 1996a, Conserved binding recognition elements of sperm chromatin, sperm lipophilic structures and nuclear envelope precursor vesicles, Eur. J. Cell Biol. 71:22–32.

    Google Scholar 

  • Collas, P., and Poccia, D. L., 1996b, Distinct egg membrane vesicles differing in binding and fusion properties contribute to sea urchin male pronuclear envelopes formed in vitro, J. Cell Sci. 109:1275–1283.

    Google Scholar 

  • Collas, P., and Poccia, D. L., 1998, Methods for studying in vitro assembly of male pronuclei using oocyte extracts from marine invertebrates: sea urchins and surf clams, Meth. Cell Biol. 53:417–452.

    Google Scholar 

  • Courvalin, J.-C., Segi, N., Blobel, G., and Woman, H. J., 1992, The lamin B receptor of the inner nuclear membrane undergoes mitosis-specific phosphorylation and is a substrate for p34cdc2-type protein kinase, J. Biol. Chem. 267:19035–19038.

    Google Scholar 

  • Cox, L. S., and Hutchison, C. J. Nuclear envelope assembly and disassembly. In: Sucellular Biochemistry: Membrane Bioenergetics, edited by (A. H. Maddy and J. R. Harris, ed.) New York: Plenum Press, 1994, pp. 263–325.

    Google Scholar 

  • Dingwall, C., and Laskey, R., 1992, The nuclear membrane, Science 258:942–947.

    Google Scholar 

  • Divecha, N., Banfic, H., and Irvine, R. F., 1993, Inositides and the nucleus and inositides in the nucleus, Cell 74:405–407.

    Google Scholar 

  • Favreau, C., Worman, H. J., Wozniak, R. W., Frappier, T., and Courvalin, J.-C., 1996, Cell cycle-dependent phosphorylation of nucleoporins and nuclear pore membrane protein gp210, Biochemistry 35:8035–8044.

    Google Scholar 

  • Fields, A. P., and Thompson, L. The regulation of mitotic nuclear envelope breakdown: a role for multiple kinases, in: Progress in cell cycle research, edited by (L. Meijer, S. Guidet, and H. Y. Tung, eds.) New York, NY Plenum Press, 1995, p. 271–286.

    Google Scholar 

  • Fisher, D. Z., Chaudhary, N., and Blobel, G., 1986, cDNA sequencing of nuclear lamins A and C reveals primary and secondary structual homology to intermediate filament proteins, Proc. Natl. Acad. Sci. USA 83:6450–6454.

    Google Scholar 

  • Foisner, R., and Gerace, L., 1993, Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation, Cell 73:1267–1279.

    Google Scholar 

  • Furukawa, K., Fritze, C. E., and Gerace, L., 1998, The major nuclear envelope targeting domain of LAP2 coincides with its lamin binding region but it distinct from its chromatin interaction domain, J. Biol. Chem. 273:4213–4219.

    Google Scholar 

  • Furukawa, K., Pantù, N., Aebi, U., and Gerace, L.,1995, Cloning of a cDNA for lamina-associated polypeptide 2 (LAP2) and identification of regions that specify targeting to the nuclear envelope, EMBO J. 14:1626–1636.

    Google Scholar 

  • Gant, T. M., and Wilson, K. L., 1997, ARF is not required for nuclear vesicle fusion or mitotic membrane disassembly in vitro: evidence for a non-ARF GTPase in fusion, Eur. J.Cell Biol. 74:10–19.

    Google Scholar 

  • Gerace, L., and Foisner, R., 1994, Integral membrane proteins and dynamic organization of the nuclear envelope, Trends Cell Biol. 4:127–131.

    Google Scholar 

  • Gerace, L., Ottaviano, Y., and Kondor-Koch, C., 1982, Identification of a major polypeptide of the nuclear pore complex, J. Cell Biol. 95:826–837.

    Google Scholar 

  • Gerasimenko, O. V., Gerasimenko, J. V., Tepekin, A. V., and Petersen, O. H., 1995, ATP-dependent accumulation and inositol trisphosphate-or cyclic ADP-ribose-mediated release of Ca2+ from the nuclear envelope, Cell 80:439–444.

    Google Scholar 

  • Glass, J. R., and Gerace, L., 1990, Lamins A and C bind and assemble at the surface of mitotic chromosomes, J. Cell Biol. 111:1047–1057.

    Google Scholar 

  • Goldberg, M. W., and Allen, T. D., 1995, Structural and functional organization of the nuclear envelope, Curr. Opin. Cell Biol. 7:301–309.

    Google Scholar 

  • Goldberg, M. W., Wiese, C., Allen, T. D., and Wilson, K. L., 1997, Dimples, pores, star-rings, and thin rings on growing nuclear envelopes: evidence for structural intermediates in nuclear pore complex assembly, J. Cell Sci. 110:409–420.

    Google Scholar 

  • Greber, U. F., and Gerace, L., 1995, Depletion of calcium from the lumen of the endoplasmic reticulum reversibly inhibits passive diffusion and signal-mediated transport into the nucleus, J. Cell Biol. 128:5–14.

    Google Scholar 

  • Götte, M., and Fischer von Mollard, G., 1998, A new beat for the SNARE drum, Trends Cell Biol. 8:215–218.

    Google Scholar 

  • Hallberg, E., Wozniak, R. W., and Blobel, G., 1993, An integral membrane protein of the pore membrane domain of the nuclear envelope contains a nucleoporin-like region, J. Cell Biol. 122:513–521.

    Google Scholar 

  • Harris, C. A., Andryuk, P. J., Cline, S., et al., 1994, Three distinct human thymopoietins are derived from alternatively spliced mRNAs, Proc. Natl. Acad. Sci.USA 91:6283–6287.

    Google Scholar 

  • Humbert, J. P., Matter, N., Artault, J. C., Koppler, P., and Malviya, A. N., 1996, Inositol 1,4,5-trisphosphate receptor is located to the inner nuclear membrane vindicating regulation of nuclear calcium signaling by inositol 1,4,5-trisphosphate. Discrete distribution of inositol phosphate receptors to inner and outer nuclear membranes [published erratum appears in J Biol Chem 1996 Mar 1; 271(9):5287], J. Biol. Chem. 271:478–485.

    Google Scholar 

  • Kahn, R. A,, 1991, Fluoride is not an activator of the smaller (20–25-kDa) GTP-binding proteins, J. Biol. Chem. 266:15595–15597.

    Google Scholar 

  • Kurihara, L. J., Beh, C. T., Latterich, M., Schekman, R., and Rose, M., 1994, Nuclear congression and membrane fusion: two distinct events in the yeast karyogamy pathway, J. Cell Biol. 126:911–923.

    Google Scholar 

  • Laskey, R., Görlich, D., Madine, M. A., Makkerh, J. P. S., and Romanowski, P., 1996, Regulatory roles of the nuclear envelope, Exp. Cell Res. 229:204–211.

    Google Scholar 

  • Latterich, M., Fröhlich, K.-U., and Schekman, R., 1995, Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes, Cell 82:885–893.

    Google Scholar 

  • Latterich, M., and Schekman, R., 1994, The karyogamy gene KAR2 and novel proteins are required for ER-membrane fusion, Cell 78:237–98.

    Google Scholar 

  • Lavoie, C., Lanoix, J., Kan, F. W., and Paiement, J., 1996, Cell-free assembly of rough and smooth endoplasmic reticulum, J. Cell Sci. 109:1415–1425.

    Google Scholar 

  • Lemaitre, J.-M., Géraud, G., and Méchali, M., 1998, Dynamics of the genome during early Xenopus laevis development: karyomeres as independent units of replication, J. Cell Biol. 142:1159–1166.

    Google Scholar 

  • Lenhard, J. M., Kahn, R. A., and Stahl, P. D., 1992, Evidence for ADP-ribosylation factor (ARF) as a regulator of in vitro endosome-endosome fusion, J. Biol. Chem. 267:13047–13052.

    Google Scholar 

  • Lippincott-Schwartz, J., Donaldson, J. G., Schweitzer, A,, et al. 1990, Microtubule-dependent retrograde transport of proteins into the ER in the presence of brefeldin A suggests an ER recycling pathway, Cell 69:821–836.

    Google Scholar 

  • Lohka, M. J., and Masui, Y., 1983, Formation in vitro of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic components, Science 220:719–721.

    Google Scholar 

  • Longo, F. J., and Anderson, E., 1968, The fine structure of pronuclear development and fusion in the sea urchin, Arbacia punctulata, J. Cell Biol. 39:339–368.

    Google Scholar 

  • Longo, F. J., Matthews, J., and Palazzo, R. E., 1994, Sperm nuclear transformations in cytoplasmic extracts from surf clam (Spisula solidissima) oocytes, Dev. Biol. 162:254–258.

    Google Scholar 

  • Lourim, D., and Krohne, G., 1993, Membrane-associated lamins in Xenopus egg extracts: identification of two vesicle populations, J. Cell Biol. 123:501–512.

    Google Scholar 

  • Lourim, D., and Krohne, G., 1994, Lamin-dependent nuclear envelope reassembly following mitosis: an argument, Trends Cell Biol. 4:314–318.

    Google Scholar 

  • Love, H. D., Lin, C.-C., Short, C. S., and Ostermann, J., 1998, Isolation of functional Golgiderived vesicles with a possible role in retrograde transport, J. Cell Biol. 140:541–551.

    Google Scholar 

  • Macaulay, C., and Forbes, D. J., 1996, Assembly of the nuclear pore: biochemically distinct steps revealed with NEM, GTPgS, and BAPTA, J. Cell Biol. 132:5–20.

    Google Scholar 

  • Malviya, A. N., and Rogue, P. J., 1998, “Tell me where is calcium bred”: clarifying the roles of nuclear calcium, Cell 92:17–23.

    Google Scholar 

  • Marshall, I. C. B., Gant, T. M., and Wilson, K. L., 1997a, Ionophore-releasable lumenal Ca2+ stores are not required for nuclear envelope assembly or nuclear protein import in Xenopus egg extracts, Cell Calcium 21:151–161.

    Google Scholar 

  • Marshall, I. C. B., and Wilson, K. L., 1997b, Nuclear envelope assembly after mitosis, Trends Cell Biol. 7:69–74.

    Google Scholar 

  • Martin, L., Crimaudo, C., and Gerace, L., 1995, cDNA cloning and characterization of lamina-associated polypeptide 1C (LAP1C), and integral protein of the inner nuclear membrane, J. Biol. Chem. 270:8822–8828.

    Google Scholar 

  • McKeon, F., Kirschner, M. W., and Caput, D., 1986, Homologies in both primary and secondeary structure between nuclear envelope and intermediate filament proteins, Nature 319:463–468.

    Google Scholar 

  • Meier, J., Campbell, K. H. S., Ford, C. C., Stick, R., and Hutchison, C. J., 1991, The role of lamin LIII in nuclear assembly and DNA replication, in cell-free extracts of Xenopus eggs, J. Cell Sci. 98:271–279.

    Google Scholar 

  • Meier, J., and Georgatos, S. D., 1994, vpe B lamins remain associated with the integral nuclear envelope protein p58 during mitosis: implications for unclear assembly, EMBO J.13:1888–1898.

    Google Scholar 

  • Nagano, A, Koga, R., Ogawa, M, Kurano, Y, Kawada, J, Okada, R, Hayashi, Y. K., Tsukahara, T., and Arahata, K., 1996, Emerin deficiency at the nuclear membrane in patients with Emery-Dreifuss muscular dystrophy, Nat. Genet. 12:254–259.

    Google Scholar 

  • Nakagawa, J., Kitten, G. T., and Nigg, E. A., 1989, A somatic cell-derived system for studying both early and late mitotic events in vitro, J. Cell Sci. 94:449–462.

    Google Scholar 

  • Newmeyer, D. D., Finlay, D. R., and Forbes, D. J., 1986, in vitro transport of a fluorescent nuclear protein and exclusion of non-nuclear proteins, J. Cell Biol. 103:2091–2102.

    Google Scholar 

  • Newport, J., and Dunphy, W., 1992, Characterization of the membrane binding and fusion events during nuclear envelope assembly using purified components, J. Cell Biol. 116:295–306.

    Google Scholar 

  • Newport, J. W., 1987, Nuclear reconstitution in vitro: stages of assembly around protein-free DNA, Cell 48:205–217.

    Google Scholar 

  • Newport, J. W., Wilson, K. L., and Dunphy, W. G., 1990, A lamin-independent pathway for nuclear envelope assembly, J. Cell Biol. 111:2247–2259.

    Google Scholar 

  • Ostermann, J., Orci, L., Tani, K., et al., 1993, Stepwise assembly of functionally active transport vesicles, Cell 75:1015–1025.

    Google Scholar 

  • Paiement, J., 1981, GTP-dependent fusion of outer nuclear membranes in vitro, Exp. Cell Res. 134:93–102.

    Google Scholar 

  • Paiement, J., 1984a, GTP stimulates fusion between homologous and heterologous nuclear membranes, Biochim. Biophys. Acta 777:274–282.

    Google Scholar 

  • Paiement, J., 1984b, Physiological concentations of GTP stimulate fusion of the endoplasmic reticulum and the nuclear envelope, Exp. Cell Res. 151:354–366.

    Google Scholar 

  • Paulin-Levasseur, M., Blake, D. L., Julien, M., and Rouleau, L., 1996, The MAN antigens are non-lamin constituents of the nuclear lamina in vertebrate cells, Chromosoma 104:367–379.

    Google Scholar 

  • Perez-Terzic, C., Pyle, J., Jaconi, M., Stehno-Bittel, L., and Clapham, D. E., 1996, Conformational states of nuclear pore complex induced by depletion of nuclear Ca2+ stores, Science 273:1875–1877.

    Google Scholar 

  • Peters, J.-M., Walsh, M. J., and Franke, W. W.,1990, An abundant and ubiquitous homooligomeric ring-shaped ATPase particle related to the putative vesicle fusion proteins, Sec18p and NSF, EMBO J. 9:1757–1767.

    Google Scholar 

  • Pfaller, R., and Newport, J. W., 1995, Assembly/disassembly of the nuclear envelope membrane. Characterization of the membrane-chromatin interaction using partially purified regulatory enzymes, J. Biol. Chem. 270:19066–19072.

    Google Scholar 

  • Pfaller, R., Smythe, C., and Newport, J. W., 1991, Assembly/disassembly of the nuclear envelope membrane: cell cycle-dependent binding of nuclear membrane vesicles to chromatin in vitro, Cell 65:209–217.

    Google Scholar 

  • Poccia, D. L., and Collas, P., 1996, Transforming sperm nuclei into male pronuclei in vivo and in vitro, Curr. Topics Dev. Biol. 34:25–88.

    Google Scholar 

  • Poccia, D. L., and Collas, P., 1997, Nuclear envelope dynamics during male pronuclear development, Devel. Growth. Differ. 39:541–550.

    Google Scholar 

  • Poccia, D. L., and Green, G. R., 1992, Packaging and unpackaging the sea urchin sperm genome, Trends Biochem. Sci. 17:223–227.

    Google Scholar 

  • Pyrpasopoulou, A., Meier, J., Maison, C., Simos, G., and Georgatos, S. D., 1996, The lamin B receptor (LBR) provides essential chromatin docking sites at the nuclear envelope, EMBO J. 15:7108–7119.

    Google Scholar 

  • Rabouille, C., Kondo, H., Newman, R., Hui, N., Freemont, P., and Warren, G., 1998, Syntaxin 5 is a common component of the NSF-and p97-mediated reassembly pathways of Golgi cisternae from mitotic Golgi fragments in vitro, Cell 92:603–610.

    Google Scholar 

  • Rabouille, C., Levine, T. P., Peters, J. M., and Warren, G., 1995, An NSF-like ATPase, p97, and NSF mediate cisternal regrowth from mitotic Golgi fragments, Cell 82:905–914.

    Google Scholar 

  • Rapoport, T. A., Jungnickel, B., and Kutay, U., 1996, Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes, Annu. Rev. Biochem. 65:271–303.

    Google Scholar 

  • Rothman, J. E., and Sollner, T. H., 1997, Throttles and dampers: controlling the engine of membrane fusion, Science 276:1212–1213.

    Google Scholar 

  • Rothman, J. E., and Warren, G., 1994, Implications of the SNARE hypothesis for intracellular membrane topology and dynamics, Curr. Biol. 4:220–223.

    Google Scholar 

  • Santella, L., and Carafoli, E., 1997, Calcium signaling in the cell nucleus, FASEB J. 11:1091–1109.

    Google Scholar 

  • Schuler, E., Lin, F., and Worman, H. J., 1994, Characterization of the human gene encoding LBR,anintegralproteinofthenuclearenvelopeinnermembrane, J. Biol. Chem. 269:11312–11317.

    Google Scholar 

  • Sheehan, M. A., Mills, A. D., Sleeman, A. M., Laskey, R. A., and Blow, J. J., 1988, Steps in the assembly of replication-competent nuclei in a cell-free system from Xenopus eggs, J. Cell Biol. 106:1–12.

    Google Scholar 

  • Shumaker, D. K., Vann, L. R., Goldberg, M. W., Allen, T. D., and Wilson, K. L., 1998, TPEN, a Zn2+/Fe2+chelator with low affinity for Ca2+, inhibits lamin assembly, destabilizes nuclear architecture and may independently protect nuclei from apoptosis in vitro, Cell Calcium 23:151–164.

    Google Scholar 

  • Simos, G., and Georgatos, S. D., 1992, The inner nuclear membrane protein p58 associates in vivo with a p58 kinase and the nuclear lamins, EMBO J. 11:4027–4036.

    Google Scholar 

  • Sollner, T., 1995, SNAREs and targeted membrane fusion, FEBS Lett. 369:80–83.

    Google Scholar 

  • Spiro, D. J., Taylor, T. C., Melancon, P., and Wessling-Resnick, M., 1995, Cytosolic ADP-ribosylation factors are not required for endosome-endosome fusion but are necessary for GTPgammaS inhibition of fusion, J. Biol. Chem. 270:13693–13697.

    Google Scholar 

  • Stehno-Bittel, L., Perez-Terzic, C., and Clapham, D. E., 1995, Diffusion across the nuclear envelope inhibited by depletion of the nuclear Ca2+ store, Science 270:1835–1838.

    Google Scholar 

  • Sullivan, K. M., Lin, D. D., Agnew, W., and Wilson, K. L., 1995, Inhibition of nuclear vesicle fusion by antibodies that block activation of inositol 1,4,5-trisphosphate receptors, Proc. Natl. Acad. Sci. USA 92:8611–8615.

    Google Scholar 

  • Sullivan, K. M., and Wilson, K. L., 1994, A new role for IP3 receptors: Ca2+ release during nuclear vesicle fusion, Cell Calcium 16:314–321.

    Google Scholar 

  • Sullivan, K. M. C., Busa, W. B., and Wilson, K. L., 1993, Calcium mobilization is required for nuclear vesicle fusion in vitro: implications for membrane traffic and IP3 receptor function, Cell 73:1411–1422.

    Google Scholar 

  • Ulitzur, N., and Gruenbaum, Y., 1989, Nuclear envelope assembly around sperm chromatin in cell-free preparations from Drosophila embryos, FEBS Lett. 259:113–116.

    Google Scholar 

  • Ulitzur, N., Harel, A., Feinstein, N., and Gruenbaum, Y., 1992, Lamin activity is essential for nuclear envelope assembly in a Drosophila embryo cell-free extract, J. Cell Biol. 119:17–25.

    Google Scholar 

  • Ulitzur, N., Harel, A., Goldberg, M., Feinstein, N., and Gruenbaum, Y., 1997, Nuclear membrane vesicle targeting to chromatin in a Drosophila cell-free system, Mol. Biol. Cell 8:1439–1448.

    Google Scholar 

  • Vigers, G. P. A., and Lohka, M. J., 1991, A distinct vesicle population targets membranes and pore complexes to the nuclear envelope in Xenopus eggs, J. Cell Biol. 112:545–556.

    Google Scholar 

  • Vigers, G. P. A,, and Lohka, M. J., 1992, Regulation of nuclear envelope precursor functions during cell division, J. Cell Sci. 102:273–284.

    Google Scholar 

  • Weber, T., Zemelman, B. V., McNew, J. A., et al., 1998, SNAREpins: minimal machinery for membrane fusion, Cell 92:759–772.

    Google Scholar 

  • Wiese, C., Goldberg, M., Allen, T. D., and Wilson, K. L., 1997, Nuclear envelope assembly in Xenopus extracts visualized by scanning EM reveals a transport-dependent“envelope smoothing” event, J. Cell Sci. 110:1489–1502.

    Google Scholar 

  • Wiese, C., and Wilson, K., 1993, Nuclear membrane dynamics, Curr Opin. Cell Biol. 5:387–394.

    Google Scholar 

  • Wilson, K. L., and Newport, J. W., 1988, A trypsin-sensitive receptor on membrane vesicles is required for nuclear envelope formation in vitro, J. Cell Biol. 107:57–68.

    Google Scholar 

  • Worman, H. J., Evans, C., and Blobel, G., 1990, The lamin B receptor of the nuclear envelope inner membrane: a polytopic protein with eight potential transmembrane domains, J.Cell Biol. 11:1153–1542.

    Google Scholar 

  • Worman, H. J., Yuan, J., Blobel, G., and Georatos, S. D., 1988,A lamin B receptor in the nuclear envelope, Proc. Natl. Acad. Sci. USA 85:8531–8534.

    Google Scholar 

  • Ye, Q., and Worman, H. J., 1994, Primary structure analysis and lamin B and DNA binding of human LBR, and integral protein of the nuclear envelope inner membrane,J. Biol. Chem. 269:11306–11311.

    Google Scholar 

  • Ye, Q., and Worman, H. J., 1996, Interaction between and integral protein of the nuclear envelope inner membrane and human chromodomain proteins homologous to Drosophila HP1, J. Biol. Chem. 271:14653–14656.

    Google Scholar 

  • Zatsepina, O. V., Polyakov, V. Y., and Chentsov, Y. S., 1977, Some structural aspects of the fate of the nuclear envelope during mitosis, Eur. J. Cell Biol. 16:130–144.

    Google Scholar 

  • Zatsepina, O. V., Polyakov, V. Y., and Chentsov, Y. S., 1982, Nuclear envelope formation around metaphase chromosomes: chromosome decondensation and nuclear envelope reconstitution during mitosis, Eur J. Cell Biol. 26:277–283.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Collas, P., Poccia, D. (2002). Membrane Fusion Events during Nuclear Envelope Assembly. In: Hilderson, H., Fuller, S. (eds) Fusion of Biological Membranes and Related Problems. Subcellular Biochemistry, vol 34. Springer, Boston, MA. https://doi.org/10.1007/0-306-46824-7_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-46824-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46313-6

  • Online ISBN: 978-0-306-46824-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation