Circadian Rhythms in Bacteria and Microbiomes

  • Book
  • © 2021

Overview

  • A comprehensive overview on circadian clock systems in prokaryotes
  • Reviews the circadian clock system in cyanobacteria - including Kai
  • Highlights modeling approaches and biotech applications

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

This book addresses multiple aspects of biological clocks in prokaryotes.
The first part of the book deals with the circadian clock system in cyanobacteria, i.e. the pioneer of bacterial clocks. Starting with the history and background of cyanobacteria and circadian rhythms in microorganisms, the topics range from the molecular basis, structure and evolution of the circadian clock to modelling approaches, Kai systems in cyanobacteria and biotechnological applications.
In the second part, emergent timekee** properties of bacteria in microbiomes and bacteria other than cyanobacteria are discussed.

Since the discovery of circadian rhythms in cyanobacteria in the late 1980s, the field has exploded with new information. The cyanobacterial model system for studying circadian rhythms (Synechococcus elongatus), has allowed a detailed genetic dissection of the bacterial clock due to state-of-the-art methods in molecular, structural, and evolutionary biology. Cutting-edge research spanning from cyanobacteria and circadian phenomena in other kinds of bacteria, to microbiomes has now given the field another major boost.

This book is aimed at junior and senior researchers alike. Students or researchers new to the field of biological clocks in prokaryotes will get a comprehensive overview, while more experienced researchers will get an update on the latest developments. 

Similar content being viewed by others

Keywords

Table of contents (20 chapters)

  1. The Circadian Clock System in Cyanobacteria: Pioneer of Bacterial Clocks

  2. Circadian Phenomena in Microbiomes/Populations and Bacteria Besides Cyanobacteria

Editors and Affiliations

  • Department of Biological Sciences, Vanderbilt University, Nashville, USA

    Carl Hirschie Johnson

  • University of Chicago, Chicago, USA

    Michael Joseph Rust

About the editors

Carl Hirschie Johnson earned his B.A. at the University of Texas, followed by graduate work with Colin Pittendrigh, a pioneer of chronobiology, at Stanford University. A postdoctoral fellowship with the clocks and bioluminescence expert J. Woodland (‘Woody’) Hastings at Harvard University completed his training. Johnson is now Cornelius Vanderbilt Professor of Biological Sciences at Vanderbilt University, and his laboratory studies circadian biological clocks from perspectives ranging from molecules (biochemistry and biophysics) to populations (evolution and adaptive fitness). He served as President of the Society for Research on Biological Rhythms (SRBR), the major international society of chronobiologists in 2012-2014.



Michael Rust earned his B.S. in Physics & Mathematics at Harvey Mudd College, Claremont, CA, USA, and did his Ph.D. in Physics at Harvard University, Cambridge, MA. Michael Rust is now Associate Professor in the Department of Molecular Genetics and Cell Biology & the Department of Physics in the University of Chicago, Chicago, Illinois. He is also the Director of the Institute for Biophysical Dynamics. Dr. Rust and his research group have the goal of combining experimental measurements with mathematical analyses to understand dynamical behavior in biology. A major focus of the lab is the circadian clock in cyanobacteria, where a system of purified proteins is capable of generating a remarkably robust 24-hour oscillation in protein phosphorylation that is used to organize cellular physiology.

 

Bibliographic Information

Publish with us

Navigation