Log in

Observation of a Strongly Enhanced Relaxation Time of an In-situ Tunable Transmon on a Silicon Substrate up to the Purcell Limit Approaching 100 μs

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The remarkable advances of quantum computation technology with superconducting qubits based on circuit quantum electrodynamics (QED) architecture have been achieved by improving control, protection and measurement of the quantum states at the same time. At the heart of all these quantum operations, the significant enhancement of the qubit coherence time during the last decades was the key. Even after all these advances, the coherence and relaxation time of superconducting qubits still requires further improvements toward fault-tolerant quantum computation. Here, we report our observation of a strongly enhanced lifetime of an in-situ tunable superconducting transmon qubit on a silicon substrate that is embedded in a three-dimensional copper cavity. We measured a lifetime of the qubit of up to 84 µs, which is the best reported value of an in-situ tunable transmon on a silicon substrate. In our experiment, the in-situ frequency tunability over a broad range enabled the Purcell factor to be controlled continuously by detuning the qubit frequency against the resonator frequency in the strong dispersive regime. The silicon substrate has its own importance because the substrate should be fully compatible with the conventional semiconductor processes so that scalability and multi-chip module capability are guaranteed. In order to control the Purcell factor with another parameter, we displaced the qubit position in the cavity and observed a longer relaxation time with a smaller coupling coefficient. We believe that this systematic study and the control technique of the Purcell effect in the circuit QED design, together with minimizing the microwave photon loss through an improvement of the fabrication, will contribute to the realization of a practical large-scale quantum computer based on superconducting qubit technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Arute et al., Nature 574, 505 (2019).

    Article  ADS  Google Scholar 

  2. M. Kjaergaard et al., Annu. Rev. Condens. Matter Phys. 11, 369 (2020).

    Article  Google Scholar 

  3. M. H. Devoret and R. J. Schoelkopf, Science 339, 1169 (2013).

    Article  ADS  Google Scholar 

  4. P. Krantz et al., Appl. Phys. Rev. 6, 021318 (2019).

    Article  ADS  Google Scholar 

  5. W. D. Oliver and P. B. Welander, MRS Bull. 38, 816 (2013).

    Article  Google Scholar 

  6. Y. Nakamura, Y. A. Pashkin and J. S. Tsai, Nature 398, 786 (1999).

    Article  ADS  Google Scholar 

  7. A. P. Place et al., ar**v preprint ar**v:.00024 (2020).

    Google Scholar 

  8. C. Rigetti et al., Phys. Rev. B 86, 100506 (2012).

    Article  ADS  Google Scholar 

  9. A. Nersisyan et al., ar**v preprint ar**v:.08042 (2019).

    Google Scholar 

  10. A. Wallraff et al., Nature 431, 162 (2004).

    Article  ADS  Google Scholar 

  11. J. Koch et al., Phys. Rev. A 76, 042319 (2007).

    Article  ADS  Google Scholar 

  12. H. Paik et al., Phys. Rev. Lett. 107, 240501 (2011).

    Article  ADS  Google Scholar 

  13. A. Dunsworth et al., Appl. Phys. Lett. 111, 022601 (2017).

    Article  ADS  Google Scholar 

  14. B. Lienhard et al., ar**v preprint ar**v:.05425 (2019).

    Google Scholar 

  15. Y. Chu et al., Appl. Phys. Lett. 109, 112601 (2016).

    Article  ADS  Google Scholar 

  16. J. M. Martinis et al., Phys. Rev. Lett. 95, 210503 (2005).

    Article  ADS  Google Scholar 

  17. A. A. Houck et al., Phys. Rev. Lett. 101, 080502 (2008).

    Article  ADS  Google Scholar 

  18. O. Dial et al., Supercond. Sci. Technol. 29, 044001 (2016).

    Article  ADS  Google Scholar 

  19. J. A. Schreier et al., Phys. Rev. B 77, 180502 (2008).

    Article  ADS  Google Scholar 

  20. J. Bylander et al., Nat. Phys. 7, 565 (2011).

    Article  Google Scholar 

  21. M. D. Reed et al., Appl. Phys. Lett. 96, 203110 (2010).

    Article  ADS  Google Scholar 

  22. E. Jeffrey et al., Phys. Rev. Lett. 112, 190504 (2014).

    Article  ADS  Google Scholar 

  23. E. A. Sete, J. M. Martinis and A. N. Korotkov, Phys. Rev. A 92, 012325 (2015).

    Article  ADS  Google Scholar 

  24. F. Yan et al., Nat. Commun. 7, 12964 (2016).

    Article  ADS  Google Scholar 

  25. E. M. Purcell, H. C. Torrey and R. V. Pound, Phys. Rev. A 69, 37 (1946).

    Article  ADS  Google Scholar 

  26. P. Goy, J. Raimond, M. Gross and S. Haroche, Phys. Rev. Lett. 50, 1903 (1983).

    Article  ADS  Google Scholar 

  27. D. Kleppner, Phys. Rev. Lett. 47, 233 (1981).

    Article  ADS  Google Scholar 

  28. A. Blais et al., Phys. Rev. A 69, 062320 (2004).

    Article  ADS  Google Scholar 

  29. A. Wallraff et al., Phys. Rev. Lett. 95, 060501 (2005).

    Article  ADS  Google Scholar 

  30. A. A. Houck et al., Nature 449, 328 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We greatly thank Dr. Sun Kyung Lee for data analysis and manuscript preparation. We thank **su Son and Junyoung Lee for their help in the simulation and the measurement. This work is supported by the R&D Convergence Program of NST (National Research Council of Science and Technology) (CAP-15-08-KRISS) and the Quantum Computing Technology Development Program of NRF (National Research Foundation) (2019M3E4A1079894).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gahyun Choi or Yonuk Chong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, G., Choi, G., Choi, J. et al. Observation of a Strongly Enhanced Relaxation Time of an In-situ Tunable Transmon on a Silicon Substrate up to the Purcell Limit Approaching 100 μs. J. Korean Phys. Soc. 76, 1029–1034 (2020). https://doi.org/10.3938/jkps.76.1029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.76.1029

Keywords

Navigation