Log in

Thickness-dependent enhancement of the optical resolution in the vicinity of an epsilon-near-zero slab

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Recent studies have reported that an epsilon-near-zero (ENZ) thin slab between a specimen and a substrate contributes to enhancing the spatial resolution of the optical system. Here, we investigate the ENZ thickness dependence of the resolution enhancement. By employing the edge response function, we directly measure the resolution of an optical system when imaging the sharp edge of a metal film. We found that the optimum ENZ slab thickness was 700 nm and the achieved resolution was 11 μm at a wavelength of 8 μm. Owing to the enhanced resolution by ENZ slab, we successfully imaged subwavelength slit arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Fowles, Introduction to Modern Optics (Dover Publications, Inc., New York 1989).

    Google Scholar 

  2. M. Switkes and M. Rothschild, MOEMS 1, 225 (2002).

    Article  Google Scholar 

  3. L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University Press, London, 2006).

    Book  Google Scholar 

  4. S. M. Mansfield and G. S. Kino, Appl. Phys. Lett. 57, 2615 (1990).

    Article  ADS  Google Scholar 

  5. Q. Wu, G. D. Feke, R. D. Grober and L. P. Ghislain, Appl. Phys. Lett. 75, 4064 (1999).

    Article  ADS  Google Scholar 

  6. S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, Appl. Phys. Lett. 78, 4071 (2001).

    Article  ADS  Google Scholar 

  7. A. Yurt, A. Uyar, T. B. Cilingiroglu, B. B. Goldberg and M. S. Ünlü, Opt. Express 22, 7422 (2014).

    Article  ADS  Google Scholar 

  8. J. S. Kyoung, M. A. Seo, H. R. Park, K. J. Ahn and D. S. Kim, Opt. Commun. 283, 4907 (2010).

    Article  ADS  Google Scholar 

  9. J. Kyoung, D. J. Park, S. J. Byun, J. Lee, S. B. Choi, S. Park and S. W. Hwang, Opt. Express 22, 31875 (2014).

    Article  ADS  Google Scholar 

  10. M. Silveirinha and N. Engheta, Phys. Rev. Lett. 97, 157403 (2006).

    Article  ADS  Google Scholar 

  11. A. Alù, F. Bilotti, N. Engheta and L. Vegni, IEEE Trans. Antennas. Propag. 54, 1632 (2006).

    Article  ADS  Google Scholar 

  12. A. Alù, M. G. Silveirinha, A. Salandrino and N. Engheta, Phys. Rev. B 75, 155410 (2007).

    Article  ADS  Google Scholar 

  13. S. W. Smith, The Scientist & Engineer’s Guide to Digital Signal Processing (California Technical Publishing, San Diego, CA 1997).

    Google Scholar 

  14. E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta and A. Polman, Phys. Rev. Lett. 110, 013902 (2013).

    Article  ADS  Google Scholar 

  15. R. Maas, J. Parsons, N. Engheta and A. Polman, Nat. Photon. 7, 907 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo Bong Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, YR., Choi, S.B., Park, D.J. et al. Thickness-dependent enhancement of the optical resolution in the vicinity of an epsilon-near-zero slab. Journal of the Korean Physical Society 69, 268–271 (2016). https://doi.org/10.3938/jkps.69.268

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.69.268

Keywords

Navigation